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Abstract
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1 Introduction

Assessing whether a policy has any effect on an outcome of interest has been one of the main

concerns in empirical research. As summarized in Imbens (2004), Heckman and Vytlacil

(2007), and Imbens and Wooldridge (2009), the focus of the policy evaluation literature

has been mainly confined to situations where the realized outcome of interest is completely

observed for the treated and the control groups. However, when the outcome variable is

subjected to censoring, such inference procedures may provide misleading conclusions on

the effect of the proposed policy. Assessing if labor market programs affect the length of

unemployment, if correctional programs affect recidivism of criminal activities, or whether

the survival time is affected by a new clinical therapy are just few examples where the

outcome of interest is usually subjected to censoring mechanisms, and hence, standard

policy evaluation procedures are not suitable. This article remedy this by proposing new

nonparametric tests for conditional treatment effects when the outcome of interest, typically

a duration, is subjected to right censoring.

Our test statistics are suitable functionals of empirical processes whose limiting distribu-

tions under the null can be estimated using a multiplicative-type bootstrap, which is proved

to be valid. Our proposed tests are consistent against both one and two-sided alternative

fixed alternatives and can detect nonparametric alternatives converging to the null at the

parametric n−1/2-rate, n being the sample size. Since our test proposal does not rely on con-

tinuity assumptions regarding the duration outcome, our policy evaluation tools are suitable

for both discrete and continuous censored data. Moreover, our tests can be used not only

for unconfounded treatment assignments, but also for the local treatment effect setup of

Imbens and Angrist (1994) and Angrist et al. (1996), and for the case of dynamic treatment

allocations as described in Sianesi (2004). Overall, this paper offers a unifying approach

to derive uniformly valid nonparametric tests for treatment effects with censored outcomes.

Although our focus is on hypotheses testing, estimators for unconditional treatment effects

naturally arises as a by-product of the testing procedure.

To achieve the aforementioned properties, this paper relies on three components. First,
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our tests are based on inverse probability weighting (IPW) estimators of the relevant treat-

ment effect measures, in which the propensity score is estimated by nonparametric methods.

In particular, we consider the series logit estimator proposed by Hirano et al. (2003), but

other estimators are possible. Second, because the focus of this paper is on testing for

conditional treatment effects, our hypotheses of interest are based on conditional moment

restrictions. To avoid the use of smooth estimates, we adopt an integrated moment approach,

reducing the conditional moment restrictions to an infinite number of unconditional orthog-

onality restrictions, as others have adopted in different contexts, see e.g. Delgado (1993),

Stute (1997), Stute et al. (1998) and Delgado and González-Manteiga (2001). In a setup

without censoring, we would be able to estimate the integrated moments by their empirical

analogue. However, this is not feasible when the outcome of interest is subjected to right

censoring. To handle this issue, we characterize the integrated moments as Kaplan-Meier

(KM) integrals, see e.g. Stute and Wang (1993a,b), Stute (1993, 1995, 1996), and Sellero

et al. (2005). However, because the treatment effect measures depend on the propensity

score, our integrand is unknown, which is in contrast to the literature on KM integrals.

To accommodate this issue, we present new results for Kaplan-Meier integrals indexed by

unknown, possibly infinite-dimensional nuisance parameters.

This paper is directly connected to the treatment effects literature. For recent reviews of

this huge literature, see e.g. Imbens (2004), Heckman and Vytlacil (2007), and Imbens and

Wooldridge (2009), among others. In cases where the outcome is subjected to censoring, few

estimation procedures have been considered, see e.g. Ham and Lalonde (1996), Eberwein

et al. (1997), Hubbard et al. (2000), Abbring and van den Berg (2003), Abbring and van den

Berg (2005), Crépon et al. (2009), and Frandsen (2014), among others. Nonetheless, the

aforementioned papers have not devoted attention to nonparametric tests. In fact, the

literature on nonparametric tests for treatment effects is scarce, Abadie (2002), Crump

et al. (2008), Lee and Whang (2009), Delgado and Escanciano (2013), and Hsu (2013) being

exceptions when censoring is not an issue. In the presence of censoring, Lee (2009) developed

a nonparametric test of the null hypothesis of no distributional treatment effect. However,

the “two sample” setup adopted by Lee (2009) greatly differs from ours.
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To illustrate the relevance of our new policy evaluation tools, we apply the proposed

tests to evaluate labor market programs using two different sets of applications. First, as

in Woodbury and Spiegelman (1987), we analyze the Illinois Reemployment Bonus Exper-

iments that was carried out in the 1980’s. Then, as in Lee (2009), we use observational

female job training data from the Department of Labor in South Korea to test if receiving

job training instead of unemployment insurance affects the unemployment duration. With

these applications we show that introducing ad hoc parametric assumptions or ignoring

treatment effect heterogeneity may lead to spurious conclusions about the policy effective-

ness.

The remainder of the paper is organized as follows. We first describe the basic setup

and the concentrate on testing the null of zero conditional distributional treatment effects.

In Section 3, we derive the asymptotic distribution for the baseline tests and introduce a

bootstrap method to approximate their critical values. A Monte Carlo study in Section

4 investigates the finite sample properties of the test proposals. In Section 5, we present

some applications of our basic setup, i.e. we consider the null of zero conditional average

treatment effects and show that our test procedure is also suitable when treatment allocation

is endogenous or dynamic. In Section 6, we apply the policy evaluation tests to different

datasets. Finally, we offer concluding remarks and suggest extensions for future research.

Mathematical proofs are gathered in an appendix at the end of the article.

2 Testing for zero conditional treatment effects with

censored outcomes

2.1 Basic setup

We consider a set of individuals flowing into a state of interest, and the time these individuals

spend in that state is our outcome of interest. Upon inflow, an individual is assigned to

a treatment or to a control group. The goal of this paper is to assess different hypotheses

related to the causal effect of the treatment on the time spent in this state of interest.
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Henceforth, all random variables are defined on a common probability space (Ω,A,P) .

Let D be an indicator of participation in the program, i.e. D = 1 if the unit participates

in the treatment and D = 0 otherwise. Define Y0 and Y1 as the potential outcomes under

the control and treatment groups, respectively. Additionally, let X ∈ Rk be vector of pre-

treatment variables, and χ
Y,X
⊆ R× Rk denote the support of Y ×X.

In this paper, the treatment effect measure of main interest is the conditional distribu-

tional treatment effect, that is, the difference between the conditional cumulative distribu-

tion function (CDF ) of the potential outcome under treatment and control:

Υ (t, x) = E [1 {Y1 ≤ t} − 1 {Y0 ≤ t} |X = x] .

Our main focus is on testing the hypothesis that the distributional treatment effect

(DTE) is equal to zero for every subpopulation defined by covariates, that is,

H0 : Υ (t, x) = 0 ∀(x, t) ∈ W , (1)

where W ⊆ χ
Y,X

. Under the null hypothesis H0, the conditional distribution of Y is not

affected by the treatment at W , and the alternative hypothesis H1 is the negation of H0.

An important feature of the hypothesis in (1) is its focus on distributional treatment

effects, and not only on the average treatment effects. By doing so, one can assess if the

treatment has affected any feature of the distribution of the outcome, and not necessarily

just the mean. In fact, by looking at the outcome distribution, one is able to perform

welfare analysis under mild assumptions about social preferences, see e.g. Abadie (2002).

Such analysis would not be possible if the focus were only at average treatment effects.

Another distinguishing characteristic of (1) is its focus on conditional treatment effects,

and not only on the unconditional treatment effects. That is, in this paper we are con-

cerned about the ubiquitous and commonly ignored feature that treatment effects may vary

across different subpopulations. Although heterogeneity in the effect of a policy is generally

allowed, unconditional measures of treatment effects may neglect some important differ-

ences in policy evaluations. For instance, a labor market program that does not affect the
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unemployment duration for the overall population might still be effective for a subgroup

of individuals with specific observable characteristics. As illustrated by Bitler et al. (2006,

2008, 2014) and Crump et al. (2008), being able to assess if the treatment has affected any

subpopulation is a crucial element of policy evaluations.

Next, we describe our setup. In order to model the treatment effect, we adopt the

potential outcome notation popularized by Rubin (1974). Let D, Y0, Y1 and X be defined

as before, and let p(x) ≡ P (D = 1|X = x) be the propensity score, i.e. the conditional

probability of receiving treatment. Although our interest is on Y0 and Y1, one can only

observe Q ≡ DQ1 + (1 − D)Q0, where Q0 = min {Y0, C0}, Q1 = min {Y1, C1}, C0 and

C1 being potential censoring random variables under the control and treatment groups,

respectively. Censoring might appear for different reasons such as the end of a follow-up or

drop out. In addition to Q, one also observe the censoring indicator δ ≡ Dδ1 + (1−D) δ0,

where, for j ∈ {0, 1}, δj = 1 {Yj ≤ Cj}.

Assumption 1 {(Qi, δi, Di, Xi)}ni=1 are independent and identically distributed observa-

tions of (Q, δ,D,X).

Assumption 2 (Y0, Y1, C0, C1) ⊥⊥ D|X a.s.

Assumption 3 For all x ∈ W and some ε > 0, ε ≤ p (x) ≤ 1− ε.

Assumption 4 Assume that

(i) (Y0, Y1) ⊥⊥ (C0, C1)

(ii) For j ∈ {0, 1}, P (δj = 1|X, Yj) = P (δj = 1|Yj).

Assumption 5 The distributions of Yj and Cj, j ∈ {0, 1} , has no common jumps

Assumptions 1-3 are standard in the treatment effects literature. Assumption 2 was

introduced by Rosenbaum and Rubin (1983), and states that, conditional on observables,

treatment assignment is independent of potential outcomes and censoring. Assumption 3

states that there is overlap in the covariate distributions. As shown by Khan and Tamer
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(2010), Assumption 3 is crucial in determining the convergence rate of inverse probability

weighted estimators.

In the absence of censoring, Rosenbaum and Rubin (1983) show that Assumptions 2

and 3 would suffice to identify different treatment effects measures, in particular Υ (t, x).

Nonetheless, it is important to notice that censoring introduces an additional identification

challenge because the probability of censoring is related to potential outcomes, that is, cen-

soring occurs only if Yj > Cj, j ∈ {0, 1}. Ignoring the censoring problem or analyzing only

the uncensored outcomes would therefore introduce another source of confounding. To over-

come such issue, Assumption 4 imposes additional structure on the censoring mechanism.

Assumption 4 states that, given the “time of death” Yj, the covariates do not provide

any further information whether censoring will take place, that is, δj and X are condition-

ally independent given the potential outcome Yj. A particular case in which it holds is

when Cj is independent of (Yj, X), as assumed in Honore et al. (2002), Lee and Lee (2005)

and Frandsen (2014), for example. Nonetheless, Assumption 4 is more general and allows

censoring to depend on the covariates through the potential outcome Yj. We notice that

similar assumptions have been used in different contexts, see e.g. Chen (2001), Tang et al.

(2003), D’Haultfoeuille (2010) and Breunig et al. (2014). An alternative to Assumption 4

is (Y0, Y1) ⊥⊥ (C0, C1) |X. In this case the use of smoothing techniques and trimming pro-

cedures are required, see Akritas (1994), González-Manteiga and Cadarso-Suárez (1994),

and Iglesias Pérez and González-Manteiga (1999) for examples in different contexts. With

Assumption 4, the use of smothers and trimming is avoided.

Assumption 5 is a regularity condition that does not exclude discontinuities of FYj (·) ≡

P (Yj ≤ ·) and Gj (·) ≡ P (Cj ≤ ·) at distinct points, that is, we do not impose that FYj and

Gj must be absolutely continuous. Therefore, we allow for both discrete and continuous

potential outcomes.

With the aforementioned assumptions, the next proposition shows that we can point

identify Υ (t, x) from the (Q, δ,D,X). For j ∈ {0, 1}, let τCj
= sup {t : Gj (t) < 1}. For

simplicity, assume that τC0 = τC1 = τC .
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Proposition 1 Under Assumptions 2-4, for (t, x) ∈ (−∞, τC)× Rk,

Υ (t, x) = E
[(

Dδ1 {Q ≤ t}
(1−G1 (Q−)) p(X)

− (1−D) δ1 {Q ≤ t}
(1− p(X)) (1−G0 (Q−))

) ∣∣∣∣X = x

]
. (2)

Some remarks are necessary. From Proposition 1, one can see that nonparametric point

identification of the distributional treatment effect over the entire outcome support may

not be feasible. This is intuitive because, due to right censoring mechanisms, potential

outcomes beyond τC are never observed. Given that one may not point identify the whole

distributional treatment effect, the point identification of traditional measures such as the

average treatment effect E [Y1 − Y0] is also at stake1. Nonetheless, (2) has considerable

identification power. That is, by focusing on W ⊆ (−∞, τC) × Rk, one can still point

identify the distributional treatment effects measure of interest and test the hypothesis (1)

within this portion of the CDF . This is feasible because τC is usually known in applications.

Another important feature of (2) is that the potentially restrictive condition that the

censoring distribution is the same under both treatment regimes is not necessary for iden-

tification. Such result is in contrast with the one in Frandsen (2014), for example. Indeed,

if one assumes that the censoring distribution is the same but this condition is not fulfilled,

treatment effects measures may suffer from severe bias and tests based on this assumption

may have large size distortions; see Section 4.

2.2 Characterization of the null hypothesis

Given that Υ (t, x) is identified from the data, we are able to characterize the null hypothesis

(1) in terms of observables. In fact, based on the representation in (2) and using Assumption

3 guaranteeing that p (·) ∈ (0, 1), we have,

∆ (t, x) = 0 ∀(x, t) ∈ W ⇔ Υ (t, x) = 0 ∀(x, t) ∈ W

1. In Section 5, we show how one can identify a related measure, the trimmed ATE.
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where

∆ (t, x) = E
[(

D (1− p(X))

(1−G1 (Q−))
− (1−D) p(X)

(1−G0 (Q−))

)
δ1 {Q ≤ t}

∣∣∣∣X = x

]
= Υ (t, x) p (x) (1− p (x)) .

That is, in order to test the null hypothesis (1), it suffices to check if ∆ = 0. The main

advantage of focusing on ∆ (·, ·) instead of Υ (·, ·) is that random denominators due to the

propensity score are avoided.

In order to assess if ∆ (·, ·) = 0, there are two main approaches. The first one consists of

using nonparametric smooth estimates of ∆. An important limitation of this local approach

arises when X is multivariate due to the “curse of dimensionality”. Moreover, tests in this

category are not able to detect local alternatives converging to the null at the parametric rate

n−1/2. Instead, we adopt an integrated moment approach, avoiding the use of smoothers by

means of reducing the conditional moment restriction to an infinite number of unconditional

orthogonality restrictions, i.e., we characterize the null hypothesis (1) as

H0 : I (t, x) = 0 ∀ (t, x) ∈ W , (3)

where

I (t, x) = E
[(

D (1− p(X))

(1−G1 (Q−))
− (1−D) p(X)

(1−G0 (Q−))

)
δ1 {Q ≤ t} 1 {X ≤ x}

]
. (4)

This integrated approach has been used in different contexts, see e.g. Delgado (1993), Stute

(1997), Stute et al. (1998), Koul and Stute (1999) and Delgado and González-Manteiga

(2001). Although other characterizations of H0 are feasible ( see Bierens and Ploberger

(1997), Stinchcombe and White (1998) and Escanciano (2006a,b)), we do not pursue these

possibilities in this paper.
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2.3 Kaplan-Meier integrals and test statistics

The characterization of the null hypothesis in (3) suggests using functionals of an estima-

tor of I (·, ·) as test statistics. Therefore, we must first estimate I (·, ·) using the sample

{(Qi, δi, Di, Xi)}ni=1. From (4), the challenge of estimating I (·, ·) is reduced to estimating

p (·), G1 (·), G0 (·), and then applying the plug-in principle.

The task of nonparametrically estimate p (·) is relatively standard. Following Hirano

et al. (2003), we can nonparametrically estimate p (·) using the Series Logit Estimator (SLE)

based on power series. Although other nonparametric estimators could be used - see e.g.

Ichimura and Linton (2005) and Li et al. (2009) - we do not exploit these possibilities in

this paper.

To define the SLE, let λ = (λ1, . . . , λr)
′ be a r-dimensional vector of non-negative integers

with norm |λ| =
∑r

j=1 λj. Let {λ (l)}∞l=1 be a sequence including all distinct multi-indices

λ such that |λ (l)| is non-decreasing in l and let xλ =
∏r

j=1 x
λj
j . For any integer L, define

RL (x) =
(
xλ(1), . . . , xλ(L)

)′
as a vector of power functions. Let L (a) = exp (a) / (1 + exp (a))

be the logistic CDF . The SLE for p (x) is defined as p̂ (x) = L
(
RL (x)′ π̂L

)
, where

π̂L = arg max
πL

1

n

n∑
i=1

Di log
(
L
(
RL (Xi)

′ πL
))

+ (1−Di) log
(
1− L

(
RL (Xi)

′ πL
))
.

Next, instead of directly considering estimators for G1 (·) and G0 (·), we show that,

similarly to Stute (1993, 1996), we can estimate I (·, ·) by means of empirical Kaplan-Meier

integrals. To fix ideas, suppose we could fully observe (Y,X,D), implying that G1 (·) =

G0 (·) = 0 a.s.. For a given (t, x) ∈ W , define

ξ1 (ȳ, x̄, z̄; t, x) = z̄ (1− p (x̄)) 1 {ȳ ≤ t} 1 {x̄ ≤ x} , (5)

ξ0 (ȳ, x̄, z̄; t, x) = (1− z̄) p (x̄) 1 {ȳ ≤ t} 1 {x̄ ≤ x} , (6)
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and notice that, in the absence of censoring,

I (t, x) = E [ξ1 (Y,X,D; t, x)]− E [ξ0 (Y,X,D; t, x)]

=

∫
ξ1 (ȳ, x̄, z̄; t, x)F1 (dȳ, dx̄)−

∫
ξ0 (ȳ, x̄, z̄; t, x)F0 (dȳ, dx̄) ,

where Fj (t, x) ≡ P (Y ≤ t,X ≤ x,D = j) , j ∈ {0, 1}.

From the above representation, and with the SLE p̂ (·) at our disposal, one could estimate

I (·, ·) by its sample analogue

∫
ξ̂1 (ȳ, x̄, z̄; t, x) F̂1 (dȳ, dx̄)−

∫
ξ̂0 (ȳ, x̄, z̄; t, x) F̂0 (dȳ, dx̄) (7)

=
1

n

n∑
i=1

[
ξ̂1 (Yi, Xi, Di; t, x)− ξ̂0 (Yi, Xi, Di; t, x)

]

where F̂j (t, x) denotes the empirical analog of Fj (t, x), and

ξ̂1 (ȳ, x̄, z̄; t, x) = z̄ (1− p̂ (x̄)) 1 {ȳ ≤ t} 1 {x̄ ≤ x} , (8)

ξ̂0 (ȳ, x̄, z̄; t, x) = (1− z̄) p̂ (x̄) 1 {ȳ ≤ t} 1 {x̄ ≤ x} , (9)

the analogous of (5) and (6), but with the true p (·) replaced by the SLE p̂ (·). Unfortu-

nately, due to the censoring problem, F̂j (·, ·) is not at our disposal and therefore, the above

procedure is infeasible. Nonetheless, we can exploit other possibilities. Since the Kaplan

and Meier (1958) estimator is the analogous to the empirical CDF when the outcome is

subjected to right censoring, a convenient way to proceed involves using some multivariate

Kaplan-Meier (KM) estimator of Fj (·, ·), which would use only the information available at

the sample {(Qi, δi, Di, Xi)}ni=1 .

To define the KM estimator of Fj (t, x) , j = 0, 1, let n1 and n0 be the total number of

individuals in the treated and control subsamples, Qj,1:nj
≤ · · · ≤ Qj,nj :nj

be the ordered Q

values for the subsamples with D = j ∈ {0, 1}, where ties within Y or within C are ordered

arbitrarily and ties among Y and C are treated as if the former precedes the later, and

let δj,[i:nj ] and Xj,[i:nj ] be the concomitant of the ith order statistics of the subsample with

11



D = j, i.e. the δ and X paired with Qj,i:nj
. Similarly to Stute (1993, 1996), the multivariate

Kaplan-Meier estimator of Fj (t, x) is given by

F̂
KM

j (t, x) =

nj∑
i=1

Wj,i:nj
1
{
Qj,i:nj

≤ t
}

1
{
Xj,[i:nj ] ≤ x

}
,

where

Wj,k:nj
=
nj
n

δj,[k:nj ]

nj − k + 1

k−1∏
l=1

(
nj − l

nj − l + 1

)δj,[l:nj ]

denotes its “jump” at observation k. It is important to notice that, because we do not

impose that the censoring variables C1 and C0 follow the same distribution, the KM jump

differ depending on whether D is equal to 0 or 1. This is the reason why we must consider

different KM estimators for F0 (·, ·) and F1 (·, ·).

With the SLE p̂ (·) and the KM estimators F̂
KM

1 (·, ·) and F̂
KM

0 (·, ·) at hands, one can

follow the same steps as in (7), and estimate I (·, ·) by

Î(t, x) =

∫
ξ̂1 (ȳ, x̄, z̄; t, x) F̂

KM

1 (dȳ, dx̄)−
∫
ξ̂0 (ȳ, x̄, z̄; t, x) F̂

KM

0 (dȳ, dx̄)

=

[ n1∑
i=1

W1,i:n1 ξ̂1

(
Q1,i:n1 , X1,[i:n1], D1,[i:n1]; t, x

)
−

n0∑
l=1

W0,l:n0 ξ̂0

(
Q0,l:n0 , X0,[l:n0], D0,[l:n0]; t, x

) ]
(10)

=
1

n

n∑
i=1

(
ξ̂1 (Yi, Xi, Di; t, x) δi

1− ĜKM

1 (Qi−)
− ξ̂0 (Yi, Xi, Di; t, x) δi

1− ĜKM

0 (Qi−)

)
,

where Ĝ
KM

j (·) is the Kaplan and Meier (1958) estimator of Gj (·), j = 0, 1, and the last

equality follows from the results of Satten and Datta (2001).

From the above representation of Î(·, ·), one can clearly see that indeed the task of

estimating I (·, ·) is reduced to estimate p (·), use KM estimators for G1 (·), G0 (·), and then

applying plug-in principle. Moreover, in the absence of censoring, for i = 1, . . . , n, Qi = Yi,

δi = 1 and W1,i:n1 = W0,i:n0 = n−1 a.s..Therefore, (10) naturally reduces to (7). Hence, one

can clearly see that our procedure is suitable regardless of the presence of censoring.

With Î(·, ·) at hand, we are able to test the null hypothesis (1). Our test statistics are

based on distances from
√
nÎ(·, ·) to zero. We consider the usual sup and L2 norms, leading
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to the Kolmogorov-Smirnov (KS), and Cramér-von Mises (CvM) test statistics

KSn =
√
n sup

(t,x)∈W

∣∣∣Î(t, x)
∣∣∣ , (11)

CvMn = n

∫
W

∣∣∣Î (t, x)
∣∣∣2 Ĥ (dt, dx) , (12)

respectively, where Ĥ (t, x) denotes the sample analog of H (t, x) = P (Q ≤ t,X ≤ x). Ob-

viously, different test statistics could be developed by applying other distances, but for ease

of exposition, we concentrate of KSn and CvMn.

Notice that, as a by-product of the our testing procedure, for t ∈ (−∞, τC), one can

estimate the unconditional distributional treatment effects (DTE)

Υ (t) = E
[

Dδ1 {Q ≤ t}
(1−G1 (Q−)) p(X)

− (1−D) δ1 {Q ≤ t}
(1− p(X)) (1−G0 (Q−))

]
(13)

by

Υ̂ (t) =
1

n

n∑
i=1

 Diδi1 {Qi < τ}
1− ĜKM

1 (Qi−) p̂ (Xi)
− (1−Di) δi1 {Qi < τ}(

1− ĜKM

0 (Qi−)
)

(1− p̂ (Xi))

 .

Hubbard et al. (2000) proposes a similar estimator, but relying on parametric methods,

whereas Abbring and van den Berg (2005) consider a related estimator in a context without

covariates. A detailed comparison between these estimators is beyond the scope of this

paper. Furthermore, by using test statistics similar to (11) and (12), one can test for the

presence of overall treatment effects. To avoid repetition of arguments, we focus on the

conditional tests.

3 Asymptotic Theory

3.1 Asymptotic linear representation

We now discuss the asymptotic theory for our test statistics KSn and CvMn, using the

following notation. For a generic set G, let l∞ (G) be the Banach space of all uniformly

bounded real functions on G equipped with the uniform metric ‖f‖G ≡ supz∈G |f (z)|. We
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study the weak convergence of
√
n
(
Î − I

)
(·, ·) and related processes as elements of l∞ (W).

Let ⇒ denote weak convergence on (l∞ (W) ,B∞) in the sense of J. Hoffmann-Jφrgensen,

where B∞ denotes the corresponding Borel σ-algebra - see e.g. van der Vaart and Wellner

(1996).

As shown in Section 2.3, Î(·, ·) is the difference of two empirical Kaplan-Meier integrals.

However, because our KM integrals depend on a nonparametric estimate for the propensity

score p (·), the results available in the literature cannot be straightforwardly applied, see

e.g. Stute and Wang (1993b), Stute (1993, 1995, 1996), and Sellero et al. (2005). To

accommodate this issue, we must present new results for our Kaplan-Meier integrals indexed

by unknown, infinite-dimensional nuisance parameters. In short, we show that, due the

propensity score estimation effect, an additional term in the asymptotic representation of

√
n
(
Î − I

)
(t, x) must be considered.

In order to proceed with the asymptotic analysis, let us introduce some additional no-

tation. For j ∈ {0, 1}, let Fj (t|x̄) = E [1 {Yj ≤ t} |X = x̄], Hj (t) = P (Q ≤ t,D = j),

Hj,0 (y) = P (Q ≤ t, δ = 0, D = j), and Hj,11 (t, x) = P (Q ≤ t,X ≤ x,D = j, δ = 1). Note

that Hj, Hj,0 and Hj,11 may be consistently estimated from the observed data.

For j ∈ {0, 1} define

γj,0 (t̄) = exp

{∫ t̄−

0

Hj,0 (dw̄)

1−Hj (w̄)

}
.

Let

γj,1 (t̄) =
1

1−Hj (t)

∫
1 {t̄ < w̄} ξj (w̄, x̄, z̄; t, x) γj,0 (w̄)Hj,11 (dw̄, dx̄)

and

γj,2 (t̄) =

∫ ∫
1 {v̄ < t̄, v̄ < w̄} ξj (w̄, x̄, z̄; t, x)

[1−Hj (v̄)]2
γj,0 (w̄)Hj,0 (dv̄)Hj,11 (dw̄, dx̄) ,

here ξ1 (·, ·, ·; t, x) and ξ0 (·, ·, ·; t, x) are as defined in (5) and (6), respectively. Put

ηj,i (t, x) = ξj (Qi, Xi, Di; t, x) γj,0 (Qi) δi + γj,1 (Qi) (1− δi)− γj,2 (Qi) . (14)

Some remarks are necessary. First, the above representation relies only on the “known”
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functions ξj, j = 0, 1. Then, as discussed in Stute (1995, 1996), the first term of ηj,i (t, x)

has expectation E [ξj (Q,X,D; t, x)]. The second and third terms represent the estimation

effect coming from not knowing Gj (·) in (10), and they have identical expectations. Finally,

notice that in the absence of censoring, γj,0 (·) = 1 a.s., and γj,1 (·) = γj,2 (·) = 0 a.s..

Given that Î(·, ·) is the difference of empirical KM integrals, define

ηi (t, x) = η1,i (t, x)− η0,i (t, x) , (15)

the difference of (14) between the treated and control group.

To discuss the estimation effect coming from not knowing p (·) in the KM-integrals, let

α1 (X; t, x) = −p (X) 1 {X ≤ x}F1 (t|X) , (16)

α0 (X; t, x) = (1− p (X)) 1 {X ≤ x}F0 (t|X) . (17)

Notice that α1 (·; t, x) and α0 (·; t, x) are nothing more than the conditional expectation of

the derivative of ξ1 and ξ0, as defined in (5) and (6), with respect to p(·), respectively.

Similarly to (15), define

α (X; t, x) = α1 (X; t, x)− α0 (X; t, x) . (18)

Before presenting our asymptotic results, we need to assume some additional regularity

conditions.

Assumption 6 (i) The support χ
X

of the k-dimensional covariate X is a Cartesian prod-

uct of compact intervals, χ
X

=
∏k

j=1 [xlj, xuj] ;

(ii) The density of X is bounded, and bounded away from 0, on χ
X

(iii) For j ∈ {0, 1}, and any given t ∈ χY , Fj (t|x) is continuously differentiable in x ∈ χ
X
.

Assumption 7 For all x ∈ χ
X

, the propensity score p (x) is continuously differentiable of

order s ≥ 13k, where k is the dimension of X.
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Assumption 8 The series logit estimator of p (x) uses a power series with L = a ·N v for

some a > 0 and 1/ (s/k − 2) < v < 1/11.

Similar assumptions have been done by Hahn (1998), Hirano et al. (2003), Crump et al.

(2008), Donald and Hsu (2013), among others. Assumption 6 restrict the distribution of X

and Y and requires that all covariates are continuous. By imposing these restrictions, we

are able to use Newey (1997) results for series estimators. Nonetheless, at the expense of

additional notation, we can deal with the case where X has both continuous and discrete

components by means of sample splitting based on the discrete covariates. In order to avoid

cumbersome notation, we abstract from this point in the rest of the paper. Assumption 7

requires sufficient smoothness of the propensity score, whereas Assumption 8 restrict the

rate at which additional terms are added to the series approximation of p (x), depending on

the dimension of X and the number of derivatives of p (x). The restriction on the derivatives

in Assumption 7 guarantees the existence of a v that satisfy the conditions in Assumption

8.

Under the aforementioned conditions, we can state our first asymptotic result, which

provides the representation of
√
n
(
Î − I

)
(t, x) over W .

Lemma 1 Under Assumptions 1-8, we have

sup
(t,x)∈W

∣∣∣∣√n(Î (t, x)− I (t, x)
)

− 1√
n

n∑
i=1

{[ηi (t, x)− I (t, x)] + α (Xi; t, x) (Di − p(Xi))}
∣∣∣∣ = o (1) .

Lemma 1 shows that the estimator Î (t, x) can be represented as asymptotically linear:

Î (t, x) = I (t, x) +
1

n

n∑
i=1

{ψi (t, x) + α̃i (t, x)}+ oP
(
n−1/2

)
where

ψi (t, x) = ηi (t, x)− I (t, x) ,
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ηi (t, x) being defined as in (15) and

α̃i (t, x) = α (Xi; t, x) (Di − p(Xi)) . (19)

The known-IPW estimator, (10) with p̂ (x) replaced by p (x), is asymptotically linear with

score function ψ (·, ·). The function α̃ (t, x) represents the effect on the score function of

estimating p (·).

3.2 Asymptotic null distribution

Using the uniform representation of Lemma 1, we next derive the weak convergence of the

processes
√
nÎ (t, x) under the null hypothesis (1).

Theorem 1 Under the null hypothesis (1) and Assumptions 1-8, we have

√
nÎ (t, x)⇒ C∞,

where C∞ is Gaussian process with zero mean and covariance function

V ((t1, x1) , (t2, x2)) = E [{ψ (t1, x1) + α̃ (t1, x1)} {ψ (t2, x2) + α̃ (t2, x2)}] . (20)

Now, we can apply the continuous mapping theorem in order to characterize the limiting

null distributions of our test statistics using the sup and L2 distances.

Corollary 1 Under the null hypothesis (1) and the assumptions of Theorem 1,

KSn
d→ sup

(t,x)∈W
|C∞ (t, x)| ,

CvMn
d→
∫
W
|C∞ (t, x)|2H (dt, dx) .

Let Tn be a generic notation for KSn and CvMn. From Corollary 1, it follows immedi-

ately that

lim
n→∞

P
{
Tn > c

T

α

}
= α
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where

c
T

α = inf
{
c ∈ [0,∞) : lim

n→∞
P {Tn > c} = α

}
,

3.3 Asymptotic distribution under fixed and local alternatives

Now, we analyze the asymptotic properties of our tests under the fixed alternative H1.

Under H1, there is at least one (t, x) ∈ W such that Υ (t, x) 6= 0, implying that I (t, x) 6= 0

for some (t, x) ∈ W . Therefore, our test statistics KSn and CvMn diverge to infinity. Given

that the critical values are bounded, it follows that our tests are consistent. We formalize

this result in the next theorem.

Theorem 2 Under Assumptions 1-8 and the alternative hypothesis H1, we have

lim
n→∞

P
{
KSn > c

KS

α

}
= 1,

lim
n→∞

P
{
CvMn > c

CvM

α

}
= 1.

Given that our test statistics diverge to infinity under fixed alternatives, it is desirable

studying the asymptotic power of these tests under local alternatives. To this end, we study

the asymptotic behavior of Î (t, x) under alternative hypotheses converging to the null at

the parametric rate n−1/2.

Consider the following class of local alternatives:

H1,n : Υ (t, x) =
1√
n
h (t, x) ∀ (t, x) ∈ W , (21)

In the sequel, we need that (21) satisfies the following regularity condition.

Assumption 9 (a) h (·, ·) is an F -integrable function;

(b) the set hn ≡ [(t, x) ∈ W : h (x, t) 6= 0] has positive Lebesgue measure.

Theorem 3 Under the local alternatives (21) and Assumptions 1- 9,

√
nÎ (t, x)⇒ C∞ +R
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where C∞ is the process defined in Theorem 1 and R (·) is the deterministic function

R (t, x) = E [h (t,X) (p(X) (1− p (X))) 1 {X ≤ x}] .

The following corollary is a consequence of the continuous mapping theorem and Theorem

3.

Corollary 2 Under the local alternatives (21),and Assumptions 1- 9,

KSn
d→ sup

(t,x)∈W
|C∞ (t, x) +R (t, x)| ,

CvMn
d→
∫
W
|C∞ (t, x) +R (t, x)|2H (dt, dx) ,

From the above corollary, we see that our test statistics, under local alternatives of the

form of (21), converge to a different distribution due to the presence of a deterministic shift

function R. This additional term guarantees the good local power property of our test.

3.4 Estimation of critical values

From the above theorems, we see that the asymptotic distribution of
√
nÎ (·, ·) depends

on the underlying data generating process and standardization is complicated in this case.

Therefore, we propose a bootstrap method to estimate the critical values of our test. Our

bootstrap procedure is related to the wild bootstrap, but instead of just resampling imposing

the restriction under H0, we use the asymptotic linear representation of
√
nÎ (·, ·). More

precisely, we consider the multiplier-type bootstrap as Stute et al. (2000), Delgado and

González-Manteiga (2001), Barrett and Donald (2003) and Donald and Hsu (2013) suggest

in different contexts. The proposed procedure has good theoretical and empirical properties,

is straightforward to verify its asymptotic validity, and is computationally easy to implement.

In order to implement the bootstrap, we need nonparametric estimators for the terms in

the asymptotic linear representation of Lemma 1, namely the propensity score p (·), η (t, x)

as defined in (15), and α (·; t, x) as in (18).

As already discussed, we estimate p (·) using the SLE of Hirano et al. (2003). In order to
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estimate η (t, x), we notice that after plugging in p̂ (·), each γ only depends on H−functions

and is therefore estimable just replacing the H−terms by their empirical counterparts Then,

we estimate η (t, x) by its empirical analogue,

η̂ (t, x) = η̂1 (t, x)− η̂0 (t, x)

such that, for j = 0, 1,

η̂j (t, x) = ξ̂j (Q,X,D; t, x) γ̂j,0 (Q) δj,i + γ̂j,1 (Q) (1− δ)− γ̂j,2 (Q) ,

γ̂j,0 (t̄) = exp

{∫ t̄−

0

Ĥj,0 (dw̄)

1− Ĥj (w̄)

}
,

γ̂j,1 (t̄) =
1

1− Ĥj (t)

∫
1 {t̄ < w̄} ξ̂j (w̄, x̄, z̄; t, x) γ̂j,0 (w̄) Ĥj,11 (dw̄, dx̄) ,

γ̂j,2 (t̄) =

∫ ∫
1 {v̄ < t̄, v̄ < w̄} ξ̂j (w̄, x̄, z̄; t, x)[

1− Ĥj (v̄)
]2 γ̂j,0 (w̄) Ĥj,0 (dv̄) Ĥj,11 (dw̄, dx̄) ,

whereξ̂1 (·, ·, ·; t, x) and ξ̂0 (·, ·, ·; t, x) are defined in (8) and (9), respectively, and

Ĥj (w̄) =
1

n

n∑
i=1

1 {Qi ≤ w̄} 1 {Di = j} ,

Ĥj,0 (w̄) =
1

n

n∑
i=1

(1− δi) 1 {Qi ≤ w̄} 1 {Di = j}

Ĥj,11 (w̄, x̄) =
1

n

n∑
i=1

δi1 {Qi ≤ w̄} 1 {Xi ≤ x̄} 1 {Di = j}

are the empirical counterparts of Hj (w̄), Hj,0 (w̄) and Hj,11 (w̄), respectively.

Finally, we must consider nonparametric estimate for α (X; t, x) = α1 (X; t, x)−α0 (X; t, x),

α1 (X; t, x) and α1 (X; t, x) being defined in (16) and (17), respectively. To this end, notice

that

α (X; t, x) = −E [D1 {Y ≤ t}+ (1−D) 1 {Y ≤ t} |X] 1 {X ≤ x}

= −E [1 {Y ≤ t} |X] 1 {X ≤ x} .

If we fully observe (Y,X,D), we could estimate this conditional expectation using nonpara-
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metric series regression of 1 {Y ≤ ·} on X, as similarly adopted by Hirano et al. (2003) and

Donald and Hsu (2013). Given that the outcome of interest Y is subjected to censoring,

such procedure is not at our disposal. To the best of our knowledge, no nonparametric

estimator for α (·; t, x) is yet available.

Notwithstanding, by using the Kaplan-Meier weights as discussed in Sections 2 and 3.1,

we can overcome such problem and estimate α (·; t, x) by the Kaplan-Meier series estimator

α̂KM (X; t, x)

= −

(
1

n

n∑
i=1

(
Di

1− ĜKM

1 (Qi−)
+

1−Di

1− ĜKM

0 (Qi−)

)
δ1 {Qi ≤ t}RL (Xi)

)′

×

(
1

n

n∑
i=1

RL (Xi)R
L (Xi)

′

)−1

RL (X) 1 {X ≤ x} ,

where RL (·) is the same power series used in SLE estimator, with potentially different

number of series. The uniform consistency of the aforementioned nonparametric estimator

for α (X; t, x) is proved in Lemma A.4 in Appendix A.

Once we have nonparametric estimators p (·), η (t, x), and α (·; t, x), the bootstrapped

version of Î (t, x) is given by

Î∗ (t, x) =
1

n

n∑
i=1

[
η̂i (t, x) + α̂KM (Xi; t, x) (Di − p̂ (Xi))

]
Vi

where the random variables {Vi}ni=1 are iid as a random variable V with bounded support,

zero mean and variance one, being independent generated from the sample {(Qi, δi, Di, Xi)}Ni=1.

Replacing Î (t, x) with Î
∗

(t, x) , we get the bootstrap versions of KSn and CvMn, KS
∗
n

and CvM
∗
n, respectively. The asymptotic critical values are estimated by

c
KS, ∗

n,α ≡ inf
{
cα ∈ [0,∞) : lim

n→∞
P∗n {KS∗n > cα} = α

}
,

c
CvM, ∗

n,α ≡ inf
{
cα ∈ [0,∞) : lim

n→∞
P∗n {CvM∗

n > cα} = α
}

where P∗n means bootstrap probability, i.e. conditional on the sample {(Qi, δi, Di, Xi)}ni=1 .

In practice, c
KS, ∗
n,α and c

CvM, ∗
n,α are approximated as accurately as desired by

(
KS

∗
n

)
B(1−α)
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and
(
CvM

∗
n

)
B(1−α)

, the B (1− α) − th order statistic from B replicates
{
KS

∗
n

}B
l=1

of KS
∗
n

or
{
CvM

∗
n

}B
l=1

of CvM
∗
n, respectively.

The next theorem proves the validity of the proposed multiplicative bootstrap. Notice

that we need an additional smoothness assumption on Fj (·|X), j ∈ {0, 1} .

Theorem 4 Let Assumptions 1-9 hold. Additionally, for j ∈ {0, 1} , assume that Fj (·|X)

is continuously differentiable of order m ≥ k, where k is the dimension of X. Assume

{Vi}ni=1 are iid, independent of the sample {(Qi, δi, Di, Xi)}Ni=1, bounded with zero mean and

variance one. Then, under the null hypothesis (1), any fixed alternative hypothesis or under

the local alternatives (21)
√
nÎ∗ ⇒

∗
C∞

where C∞ is the same Gaussian process of Theorem 1 and ⇒
∗

denoting weak convergence

a.s. under the the bootstrap law ( see Giné and Zinn (1990)).

Straightforward application of the continuous mapping theorem lead us to conclude

that our bootstrap-based tests has correct asymptotic size, are consistent against fixed

alternatives and are able to detect contiguous alternatives of the form of (21).

4 Monte Carlo simulations

In this section, we conduct a small scale Monte Carlo exercise in order to study the finite

sample properties of our test statistics for the null hypothesis (1). The {Vi}ni= used in the

bootstrap implementations are independently generated as V with P (V = 1− κ) = κ/
√

5

and P (V = κ) = 1− κ/
√

5, where κ =
(√

5 + 1
)
/2, as proposed by Mammen (1993). The

bootstrap critical values are approximated by Monte Carlo using 1000 replications and the

simulations are based on 10000 Monte Carlo experiments. We report rejection probabilities

at the 5% significance level. Results for 10% and 1% significance levels are similar and

available upon request.
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We consider the following four designs:

(i) . Y0 ∼ Exponential

(
1

1.1 +X

)
, Y1 ∼ Exponential

(
1

1.1 +X

)
,

C1 = C2 ∼ a11 + b11 × Exponential (1) ;

(ii) . Y0 ∼ Exponential

(
1

1.1 +X

)
, Y1 ∼ Exponential

(
1

1.1 +X

)
,

C1 ∼ a12 + b12 × Exponential1, ; C2 ∼ a22 + b22 × Exponential (1) ;

(iii) . Y0 ∼ Exponential

(
1

1.1 +X

)
, Y1 ∼ Exponential

(
1

0.1 +X

)
,

C1 ∼ a13 + b13 × Exponential (1) , C2 ∼ a23 + b23 × Exponential (1) ;

(iv) . Y0 ∼ Exponential

(
1

1.1 + 2X

)
, Y1 ∼ Exponential

(
1

0.1 + x

)
,

C1 ∼ a14 + b14 × Exponential (1) , C2 ∼ a24 + b24 × Exponential (1) ;

where X is distributed as U [0, 1], independently of Y0, Y1, C1 and C0, and the parameters a

and b are chosen such that the percentage of censoring is equal to 0, 10 or 30 percent in the

whole sample. Design (i) and (ii) fall under the null hypothesis, and designs (iii)− (iv) fall

under the alternative. Design (i) differs from design (ii) by the censoring distribution: in

(i), the censoring variable is the same for treated and control group, whereas in design (ii)

C1 and C2 follow different distributions. In design (ii) we set that the censoring level under

treated and control groups are different: it is 0, 5, and 20 under control and 0, 15 and 40

under treatment. For the other designs, the censoring proportion is equal for the treatment

and control groups. In design (iii), the CDTE does not depend on covariates, whereas in

design (iv) it does. In all designs, P (D = 1|X) = X.

We report the proportion of rejections for sample sizes n = 100, 300 and 1000. We esti-

mate p (·) using the SLE: with n = 100 we use 1, X,X2, with n = 300 we use 1, X,X2, X3

and with n = 1000 we use 1, X,X2, X3, X4, X5 as power functions in the estimation proce-
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dure.

We compare our proposed tests KSn and CvMn as in (11)-(12), with two others alter-

natives: the ‘naive’ procedure where censoring is ignored ( KS
naive

n and CvM
naive

n ), and the

analogous procedure of KSn and CvMn but imposing that the censoring variable is the same

under treatment and control groups ( KS
same

n and CvM
same

n ), both implemented with the

assistance of a bootstrap analogous to the one discussed in Section 3.4. The proportion of

rejections are presented in Table 1.

Table 1: Empirical Rejection probabilities.

n=100 n=300 n=1000
% of Censoring % of Censoring % of Censoring

Design Tests 0% 10% 30% 0% 10% 30% 0% 10% 30%

KSn - 5.02 4.78 - 5.13 4.87 - 5.22 5.00
CvMn - 5.47 5.22 - 5.39 5.01 - 5.22 5.31

(i) KS
naive

n 5.02 5.34 3.34 4.96 4.98 3.09 5.55 6.19 5.53

CvM
naive

n 4.96 5.34 4.17 5.17 4.88 3.74 5.47 6.15 5.29
KS

same

n - 4.85 4.32 - 5.13 5.28 - 5.14 5.38
CvM

same

n - 5.32 4.89 - 5.44 5.09 - 5.26 5.22
KSn - 5.01 5.14 - 5.08 5.17 - 5.33 5.02

CvMn - 5.39 5.44 - 5.28 4.95 - 5.30 5.12

(ii) KS
naive

n 4.98 5.65 8.79 5.53 6.19 24.85 5.23 12.40 87.00

CvM
naive

n 4.88 5.74 6.33 5.29 6.15 12.06 5.19 8.72 43.33
KS

same

n - 6.39 19.78 - 11.21 60.18 - 43.79 98.84
CvM

same

n - 5.81 12.26 - 6.82 33.32 - 12.03 89.46
KSn - 83.97 60.99 - 99.83 92.35 - 100 99.27

CvMn - 93.00 87.23 - 100 99.98 - 100 100

(iii) KS
naive

n 88.14 84.91 68.28 99.98 99.97 99.32 100 100 100

CvM
naive

n 93.98 90.47 78.34 100 100 99.80 100 100 100
KS

same

n - 78.31 38.22 - 99.52 86.27 - 100 98.69
CvM

same

n - 90.17 77.64 - 100 99.90 - 100 100
KSn - 93.49 73.51 - 99.92 94.75 - 100 99.64

CvMn - 98.34 95.13 - 100 100 - 100 100

(iv) KS
naive

n 96.92 94.88 82.97 100 100 99.94 100 100 100

CvM
naive

n 98.74 97.22 89.36 100 100 99.99 100 100 100
KS

same

n - 77.64 49.75 - 99.81 90.71 - 100 100
CvM

same

n - 97.25 89.60 - 100 100 - 100 100

Note: One thousand bootstrap replications. Ten thousand Monte Carlo simulations. 5% level.

We observe that our tests KSn and CvMn exhibits good size accuracy for both designs

(i) and (ii) even when n = 100. In design (i), tests based on the ‘naive’ and the ‘common
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censoring’ control size, though once we increase the sample size and the censoring proportion,

the size of KS
naive

n and CvM
naive

n fall bellow the nominal level. Although one may find the

result that the ‘naive’ procedure is able to control the Type-I error surprising, the reason

behind this is simple: since Y1 = Y0, and at the same time C1 = C0, the censored outcomes

Q1 = min (Y1, C1) and Q0 = min (Y0, C0) are also equal. Nonetheless, when the C1 is

different than C2, as in design (ii), this is not true anymore. As one can see from Table 1,

the tests procedures that either ignore the censoring or incorrectly impose the assumption

of common G′s are not able to control size in this situation. This size distortions become

more evident as we increase the sample size and the censoring level, reaching values higher

than 80%.

With respect to power, our tests KSn and CvMn reach moderate levels for n = 100, but

they uniformly increase and reach satisfactory levels when sample size is 300. The power is

decreasing with the degree of censoring. For the considered designs, CvMn tends to have

higher power than KSn. In addition, we can see that our proposed tests has similar and

some times even higher power to those based on the ‘naive’ and the ‘common censoring’

procedures. Overall, these simulations show that the proposed bootstrap tests KSn and

CvMn exhibit very good size accuracy and power for relatively small sample sizes. On

other hand, the tests KS
naive

n , CvM
naive

n , KS
same

n and CvM
same

n may not be reliable due to

their inability of controlling size when the censoring distributions differ in the two treatment

regimes.

5 Some applications of the basic setup

5.1 Average treatment effects

So far, we have only discussed tests for the existence of distributional treatment effects.

Although the proposed tests for zero distributional treatment effects are able to detect a

very broad set of alternative hypotheses, we are still not able to pin down the direction of

the departure from the null hypothesis of interest. For instance, if we reject the null of zero

distributional treatment effect for all subpopulations defined by covariates, we unfortunately
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do not know if the policy has affect the conditional mean or, instead, any other particular

feature of the outcome distribution. Given that the policy evaluation literature has given a

great deal of importance to the average treatment effect, in this section we show how one

adapt our tests to focus on this particular measure.

Let Υ
CATE

(x) = E [Y1 − Y0|X = x]. Remember that, as discussed in Section 2, we

may be unable to test hypotheses concerning Υ
CATE

(x) itself because of lack of infor-

mation in the right tail of the outcome distribution due to the censoring mechanism.

Therefore, we focus our attention to the trimmed versions of Υ
CATE

(x), Υ
CATE

τ (x) =

E [Y11 {Y1 < τ} − Y01 {Y0 < τ} |X = x], where τ ≤ τC . Similar procedures have been previ-

ously considered by Sellero et al. (2005) and Pardo-Fernandez and Van Keilegom (2006).

We are concerned with the following hypothesis:

H
CATE

0 : Υ
CATE

τ (x) = 0 ∀x ∈ WX (22)

where WX ⊆ χ
X

, χ
X

denoting the support of X. Under H
CATE

0 , the trimmed average

treatment effect (ATE) is equal to zero for all subpopulations defined by covariates. The

alternative hypothesis is the negation of the null.

Following the same steps as in Section 2, our Kolmogorov-Smirnov (KS) type test statistic

for hypothesis (22) is

KS
CATE

n = sup
x∈WX

∣∣∣√nÎCATE

τ (x)
∣∣∣ , (23)

where Î
CATE

τ (x) is defined as

Î
CATE

τ (x) =
1

n

n∑
i=1

(
Di (1− p̂ (Xi))

1− ĜKM

1 (Qi−)
− (1−Di) p̂ (Xi)

1− ĜKM

0 (Qi−)

)
δiQi1 {Qi < τ} 1 {Xi ≤ x} .

The discussion for the Cramér-von Mises test is the same and is therefore omitted. Notice

that when τ = τC , δ1 {Q < τ} = δ, and therefore no user-chosen trimming is necessary.

This is of particular importance because, in this case, we are using all the information about

the average treatment effect available in the data.

In order to proceed with the asymptotic analysis, we need the following integrability
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assumption, which guarantees that the variance of our proposed estimators is finite and

that the censoring effects do not dominate in the right tails. See Stute (1996) for a detailed

discussion.

Assumption 10 For j ∈ {0, 1}, assume the following integrability condition

E
[
(Qjγj,0 (Q))2] <∞,

E
[
|Yj|C1/2

j (Y )
]
<∞, (24)

where

Cj (w) =

∫ w−

−∞

Gj(dy)

[1−Hj (y)] [1−Gj (y)]

For a given τ ≤ τC , consider the class of local alternatives

H
CATE

1,n : Υ
CATE

τ (x) =
1√
n
h

CATE

(x) ∀x ∈ WX , (25)

that satisfy the following regularity condition.

Assumption 11 Assume that

(a) h
CATE

(·) is an F -integrable function;

(b) the set h
CATE

n ≡
[
x ∈ WX : h

CATE
(x) 6= 0

]
has positive Lebesgue measure.

Using an analogous procedure described in Section 3.4, let c
CATE,∗
α,n denote the bootstrap

critical value of the KS
CATE

n . In the next theorem, we prove that, for a given τ , our tests

for CATE are asymptotically unbiased, consistent and are able to detect local alternatives

of the form of (25).

Theorem 5 Suppose Assumptions 1-8, 10 and 11 hold. Additionally, assume that for j ∈

{0, 1} , E (Yj|X) is continuously differentiable of order m ≥ k, where k is the dimension of

X. Then, for a fixed τ ≤ τC,

1. Under H
CATE

0 , limn→∞ Pn
{
KS

CATE

n > c
CATE,∗
α,n

}
= α.
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2. Under H
CATE

1 , limn→∞ Pn
{
KS

CATE

n > c
CATE,∗
α,n

}
= 1.

3. Under H
CATE

1,n , limn→∞ Pn
{
KS

CATE

n > c
CATE,∗
α,n

}
> α.

From the above discussion, we conclude that with a simple modification of our tests for

distributional treatment effects, we can concentrate on tests for average treatment effects.

In general, these tests can complement each other.

5.2 Testing within the Local Treatment Effect setup

The goal of this section is to show that, in case the unconfoundedness assumption does

not hold, that is, if Assumption 2 fails, our tests are still applicable to the local average

treatment effect (LTE) setup of Imbens and Angrist (1994) and Angrist et al. (1996).

The LTE setup presumes the availability of a binary instrumental variable Z for the

treatment assignment. Denote D0 and D1 the value that D would have taken if Z is equal

to zero or one, respectively. The realized treatment is D = ZD1 + (1− Z)D0.

In order to identify the LTE for the subpopulation of compliers, that is, individuals

who comply with their actual assignment of treatment and would have complied with the

alternative assignment, we need the following assumption.

Assumption 12 (i) (Y0, Y1, D1, D0, C1, C0) ⊥⊥ Z|X.

(ii) ∀x ∈ W , and some ε > 0,

ε < P(Z|X = x) ≡ q(x) < 1− ε,

and

P (D1 = 1|X = x) > P (D0 = 1|X = x)∀x ∈ WX ,

(iii)P (D1 > D0|X = x) = 1 ∀x ∈ W .

The null hypothesis of interest in this setup is

H
L

0 : Υ
L

(t, x) = 0 ∀ (t, x) ∈ W ,
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where

Υ
L

(t, x) = E [1 {Y1 ≤ t} − 1 {Y0 ≤ t} |X = x, Pop = Comp] .

This hypothesis is the analogous of (1) within the LTE setup.

In order to proceed, we must express Υ
L

(t, x) in terms of (Q, δ,D,X). It turns out that,

under Assumptions 3-5 and 12, for (t, x) ∈ (−∞, τC)× (−∞,∞)k,

Υ
L

(t, x) = E
[

Z1 {Y ≤ t}
1−G1 (Q−) q (X)

− (1− Z) 1 {Y ≤ t}
(1− q (X)) 1−G0 (Q−)

|X = x

]
/

E
[
ZD

q (X)
− (1− Z)D

1− q (X)
|X = x

]

From Assumption 12, the denominator of Υ
L

(·, ·) is always strictly positive. Therefore, from

the discussion in Section 2, the hypothesis of zero conditional distribution treatment effect

among compliers can be equivalently written as

H
L

0 : I
L

(t, x) = 0 ∀ (t, x) ∈ W ,

where

I
L

(t, x) = E
[(

Z (1− q (X))

1−G1 (Q−)
− (1− Z) q (X)

1−G0 (Q−)

)
δ1 {Q ≤ t} 1 {X ≤ x}

]
.

Noticing that once we replace Z to D, and q(x) to p(x), I
L

(t, x) is equal I (t, x), that is,

the LTE framework reduces to the unconfounded framework. Therefore, we conclude that

our tests for zero treatment effects with censored data are valid not only when the treatment

assignment is unconfounded, but also to a particular case when the selection to treatment

is based on unobservables, namely the local treatment effect setup of Imbens and Angrist

(1994) and Angrist et al. (1996).

5.3 Dynamic treatment assignments

Until now, all proposed tests rely on individuals entering the treatment at the beginning

of the spell. Nonetheless, this setup might be restrictive for some important applications
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where the treatment might start at any time. A leading example is the active labor market

policy (ALMP) programs for the unemployed. The common feature of ALMP is that partic-

ipation is not instantaneous upon inflow into unemployment, but individuals are observed

to enter ALMP programs at any possible time since the start of the unemployment spell.

This dynamic selection mechanism introduces some potential problems to select a proper

control group. The main issue within this dynamic setup is that individuals currently non-

treated might become treated later. Given that the probability of enrollment increases

with the elapsed duration, the treatment status depends on the outcome, and therefore,

unconfoundedness-based tests like ours may not be suitable. Nonetheless, in this subsec-

tion we show that, by focusing on the effect of treatment now versus continuing to wait for

treatment, as initially proposed by Sianesi (2004), our test statistics are still suitable.

In order to formalize this idea, we need to introduce some additional notation. The

eligible population at time u are those still in the state of interest after u periods. For the

eligibles at u, denote D
(u)

= 1 for joining a program at u and D
(u)

= 0 for not joining at least

up to u. Denote Y
(u)

1 and Y
(u)

0 as the potential outcomes if treated at u and not yet treated

up to u, respectively. Note that the potential outcomes Y
(u)

1 and Y
(u)

0 are only defined for

those who are still in the state of the interest at time u, that is, only for those Y
(u)

1 > u,

Y
(u)

0 > u. Assume that P(Y
(u)

1 > u|X) and P(Y
(u)

0 > u|X) is always between ε and 1− ε, for

some ε > 0.

The conditional distributional treatment effect is given by

Υ
(u)

(t, x) = E
[
1{Y (u)

1 ≤ t} − 1{Y (u)

0 ≤ t}|X = x, Y
(u)

1 > u, Y
(u)

0 > u
]
.

Under Assumptions 2-5, but with D
(u)
, Y

(u)

1 and Y
(u)

0 playing the role of D, Y1 and Y0,

we have that

Υ
(u)

(t, x) = E

 D
(u)
δ1 {Q ≤ t}

(1−G1 (Q−)) p(X)
−

(
1−D(u)

)
δ1 {Q ≤ t}

(1− p(X)) (1−G0 (Q−))

 |X = x,Q > u

 ,
(26)

for (t, x) ∈ (−∞, τC)× (−∞,∞)k.
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Notice that (26) is nothing more than (2) restricted to the subpopulation of those who

are still at the state of interest at time u. Therefore, once this restriction is applied to

the observed data, all the test statistics previously described can be straightforwardly used.

Hence, we conclude that our proposal is also suitable for the case of dynamic treatment

assignment.

6 Evaluation of labor market programs

In this section, we demonstrate that our proposed tests can be useful in practice. We consider

one application with experimental data, the Illinois Reemployment Bonus Experiment, and

one with observational data, a female job training in Korea.

6.1 Illinois Reemployment Bonus Experiment

In this section we analyze data from the Illinois Reemployment Bonus Experiments, which

is freely available at the W.E. Upjohn Institute for Employment Research. From mid-1984

to mid-1985, the Illinois Department of Employment Security conducted a social experiment

to test the effectiveness of bonus offers in reducing the duration of insured unemployment

At the beginning of each claim, the experiment randomly divided newly unemployed people

into three groups:

1. Job Search Incentive Group (JSI). The members of this group were told that they

would qualify for a cash bonus of $500, which was about four times the average weekly

unemployment insurance benefits, if they found a full-time job within eleven weeks

of benefits, and if they held that job for at least four months. 4816 claimants were

assigned to this group.

2. Hiring Incentive Group (HI). The members of this group were told that their employer

would qualify for a cash bonus of $500 if the claimant found a full-time job within

eleven weeks of benefits, and if they held that job for at least four months. 3963

claimants were assigned to this group.
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3. Control Group. All claimants not assigned to the other groups. These members did

not know that the experiment was taking place. 3952 individuals were assigned to this

group.

Several studies including Woodbury and Spiegelman (1987), Meyer (1996) and Bijwaard

and Ridder (2005) have analyzed the impact of the reemployment bonus on the unemploy-

ment duration measured by the number of weeks receiving unemployment insurance. It is

important to emphasize that spells which reached the maximum amount of benefits or the

state maximum number of weeks, 26, are censored, leading to censoring proportions of 38,

41 and 42 percent for the JSI, HI and the control group, respectively. Apart from the du-

ration data, some information about claimants’ background characteristics is also available:

age, gender (Male =1), ethnicity (White =1), pre-unemployment earning and the weekly

unemployment insurance benefits amount. For a complete description of the experiment

and the available dataset, see Woodbury and Spiegelman (1987).

We start our analysis by plotting in Figure 1 the estimated overall treatment effect for

the Job Search Incentive and the Hiring Incentive groups. From the discussion in Section

2.3, one can estimate Υ (t) by

Υ̂ (t) =
1

n

n∑
i=1

 Diδi1 {Qi < τ}
1− ĜKM

1 (Qi−) p̂ (Xi)
− (1−Di) δi1 {Qi < τ}(

1− ĜKM

0 (Qi−)
)

(1− p̂ (Xi))

 ,

where, given the experimental design, p̂ (·) = n−1
∑n

i=1Di, which is numerically the same

as the series logit estimator using a power series of order zero. Notice that both treatments

seems to short the unemployment duration when compared to the control group, with the

effects of the JSI group a bit larger than those of HI group.

We are focused on evaluating the effectiveness of the unemployment bonus in affecting

the unemployment duration for all subgroups characterized by observable characteristics,

and not just the overall effect as displayed in Figure 1. To this end, we perform our test

for zero CDTE. We compare our results with the one using the semi-parametric Cox (1972)

proportional hazard model.
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Figure 1: Distributional treatment effects of Illinois reemployment bonus program on
unemployment duration
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The results of the tests are reported in Table 2. Using our nonparametric proposals,

we reject the null hypothesis of zero CDTE at the 5% level for both treatment groups.

Therefore, our tests suggest that the bonus experiment in Illinois were able to affect the

unemployment duration. On the other hand, if one uses the proportional hazard model, one

cannot reject the null of zero effect for all subpopulations in the hiring incentive group at

the 5% level. In fact, by means of Grambsch and Therneau (1994)’s test, the proportionality

assumption is rejected in the data at the 1% level. This illustrates how using parametric

models to assess the existence of treatment effects might lead to “erroneous” conclusions.

One might be also interested is assessing the direction of the treatment effect, i.e., if the

unemployment bonus program has led to a shorter or longer unemployment duration. Given

the design of the Illinois experiment, it is plausible to assume that offering a reemployment

bonus for the unemployed cannot lead to longer unemployment spells than in the control

group, i.e., we might exclude the possibility that the treatment is “harmful”, that is, we can

impose that

F1 (t|X = x) ≥ F0 (t|X = x) ∀ (t, x) ∈ W . (27)

With (27), we can focus on single direction of departure of the null hypothesis of no distri-

butional treatment effects for all subpopulations characterized by covariates. That is, with
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the additional information in (27), we can test

H
one

0 : F1 (t|X = x) = F0 (t|X = x) ∀ (t, x) ∈ W ,

against

H
one

1 :F1 (t|X = x) ≥ F0 (t|X = x) ∀ (t, x) ∈ W

with strict inequality for some (t, x) ∈ W

using the test statistic

KS
one

n = sup
(t,x)∈W

√
nÎn(t, x). (28)

Critical values are computed as described in Section 3.4.

As shown in Table 2, we reject the null of zero conditional treatment effects in favor of the

one sided alternative that the treatment is non-negative (not-harmful) for all subpopulations,

in both treatment groups. Even tough we excluded the possibility of a “negative treatment

effect” for the Illinois experiment, as a “robustness check”, we also consider the other one-

sided alternative, i.e., the one in which the treatment is non-positive (not-helpful) for all

subpopulations. In fact, we fail to reject our null hypothesis of zero conditional treatment

effect for both treatment groups. Therefore, this evidence suggest that the bonus experiment

has reduced the unemployment duration.

An important aspect of the Illinois Reemployment Bonus Experiment is that participa-

tion was not mandatory. Once claimants were assigned to the treatment groups, they were

asked if they would like to participate in the demonstration or not. For those selected to the

Job Search Incentive group, 84% agreed to participate, whereas just 65% of the Hiring In-

centive group agreed to participate. This non-compliance issue may raise some selection bias

issue. Therefore, the performed tests might be interpreted as tests for zero distributional

“intention to treat” effects. Nonetheless, one may be willing to some extent disentangle the

effects of participation and the effects of actual treatment. Using the random assignment

as an instrumental variable for the actual participation in the demonstration, we adopt the
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Table 2: Bootstrap p-values for conditional distributional treatment effects tests for the
Illinois bonus experiment.

Intention to Treat

Treatment Effect tests Job Search Incentive Hiring Incentive

Two sided 0.000 0.030
One sided - Not harmful 0.000 0.015
One sided - Not helpful 0.684 0.987
Proportional Hazard Model 0.000∗ 0.059∗

Local Treatment Effects - Compliers

Treatment Effect tests Job Search Incentive Hiring Incentive
Two sided 0.000 0.025
One sided - Not harmful 0.000 0.012
One sided - Not helpful 0.885 0.935

Note: 10,000 bootstrap replications. ∗ denotes p-value based on Gaussian
approximation.

LTE framework described in Section 5.2, using a power series of order two2. The results for

these tests are displayed in the second part of Table 2, and the conclusions of our tests are

not changed. Therefore, we argue that indeed there is statistical evidence that the unem-

ployment bonus experiment has helped their participants shorten their unemployment spell

in Illinois.

6.2 Female job training in Korea.

Our method can also be used with observational data. Therefore, we analyze female job

training data from the Department of Labor in South Korea in which the control group

consist of unemployed claimants who chose to receive unemployment insurance instead of

job training. This dataset is also used by Lee (2009). The data represents about 20% of

the Korea population who became unemployed during January 1999 to the end of 1999 and

either received job training or used unemployment insurance up to the end of 1999. All

individuals were followed until the end of March 2000. Therefore, from the design of the

data, the maximum unemployment duration is 450 days, that is, τC = 450. Nonetheless,

in the dataset, all observations with unemployment duration beyond 420 days are censored.

2. The results are robust to different choices of the number of power series considered in the estimation of
the propensity score.
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There are 9312 members individuals in the control group and 1554 in the treatment group.

For a complete description of the dataset and the characteristics of the job training program,

see Lee and Lee (2005).

In addition to the unemployment duration information, we use as covariates informations

on the individual characteristics such as the number of days that the woman worked at her

last workplace, education (completed high school=1), age in years, and four ex-job categories

(1-executive, professional or semiprofessional; 2-clerical; 3-service or sales; 4-mechanic, as-

sembler, operator and menial labour). In the dataset, the proportion of censoring is around

70% for both treated and control groups. Notice that the duration for the treated group

includes the duration of job training, which average duration was about 3 months.

As is usual in the policy evaluation literature, we first estimate the unconditional average

trimmed treatment effect, E [Y11 {Y1 < τC} − Y01 {Y0 < τC}] , by

1

n

n∑
i=1

 DiδiQi

1− ĜKM

1 (Qi−) p̂ (Xi)
− (1−Di) δiQi(

1− ĜKM

0 (Qi−)
)

(1− p̂ (Xi))

 . (29)

The ATE point estimate is approximately -5 days, i.e. the job training had reduced the

overall unemployment duration by 5 days. Nonetheless, following an analogous procedure

as describe in Section 3, we are not able to reject the null hypothesis that the ATE is equal

to zero at the conventional levels. Therefore, looking at the unconditional ATE, one may

argue that the unemployment duration for those who receive unemployment insurance and

those who received job training are the same.

Next, we consider the unconditional distributional treatment effect. Figure 2 plots Υ̂ (t),

but with the propensity score p (·) estimated with the series logit estimator using a power

series of order two3. From the plot, one may argue that job training leads to an increase in

the unemployment duration of female Koreans. Indeed, we reject the null hypothesis that

the unconditional DTE is zero. From the results of the unconditional ATE and DTE tests,

it seems that the job training has had an effect at the unemployment distribution at some

point other than the average.

3. Our results are not sensitive to different choices of the number of power series included.
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Figure 2: Distributional treatment effects of job training on female unemployment duration
in South Korea
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In order to analyze if this conclusion holds true after conditioning on a vector of individual

characteristics, we apply our tests for both zero conditional average treatment effect and for

zero conditional distributional treatment effect, using age, last firm employment days, educa-

tion level and job categories as covariates. For comparison, we also apply Lee (2009)’s test for

zero CDTE based on a ‘two-sample” covariate-matching procedure. To avoid dimensionality

problems, we only consider matching on the propensity score (estimated with a probit), with

bandwidth equal to 0.62n−1/5, and the bi-weight kernel K (z) = (15/16) (1− z2)
2

1 {|z| < 1}.

The results are presented in Table 3. Using both Lee (2009)’s and our proposal, we find

evidence of treatment effect has an effect on the distributional of unemployment duration

at the 5% level. Furthermore, we reject the null hypothesis of zero conditional average

treatment effect at the 5% level, which is in contrast to the unconditional case. Hence, we

conclude that, after conditioning on a vector of observables, we are able to point out the

direction of the departure of the null hypothesis (1). This illustrates the complementary of

our tests for zero CDTE and CATE, and the additional information these tests can provide

when compared to their unconditional counterparts.
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Table 3: Tests for the Korean job training data . Bootstrap p-values

Treatment Effect tests Bootstrap p-value

Cond. Dist. Treat. Effect 0.000
Cond. Aver. Treat. Effect 0.004
Cond. Dist. Treat. Effect - Lee(2009) 0.000 ∗

Note: 10,000 bootstrap replications. ∗ denotes p-value based on
Gaussian approximation.

7 Conclusion and suggestions for further research

In this paper we proposed different nonparametric tests for treatment effects when the

outcome of interest is censored. Once we transform our conditional moment restrictions

into an infinite number of moments, we characterize our tests statistics as Kaplan-Meier

integrals that can be easily estimated from the observed data. Our tests have asymptotically

correct size, are able to detect local alternatives converging to the null hypothesis of interest

at the parametric rate n−1/2, and are consistent against fixed alternatives. Our simulation

study provide evidence that our tests have good finite sample properties. We provide two

empirical applications to demonstrate that our tests can be useful in practice.

Our results can be extended to other situations of practical interest. For instance, an

interesting extension of our results consists of testing conditional stochastic dominance when

the outcome of interest is a duration. In the context of fully observed data, conditional

stochastic dominance has recently attracted a lot of interest. See, for example, Lee and

Whang (2009), Delgado and Escanciano (2013), and Lee et al. (2013). Adopting either

Delgado and Escanciano (2013)’s or Andrews and Shi (2013, 2014)’s approach, one can

extend our proposal to the stochastic dominance analysis to censored outcomes.

Another important extension would be to allow the covariates distribution to be different

in the treatment and control groups by introducing covariate-matching techniques. With

these techniques, the use of smooth estimators cannot be avoided. In particular, proposals

by Cabus (1998), Neumeyer and Dette (2003), and Srihera and Stute (2010) designed for

testing the equality of nonparametric regression curves in a two-sample context with fully

observed data, can be adapted to handle randomly censored outcomes if one use Kaplan-
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Meier integrals as in this article. For a related approach with censored outcomes, see Pardo-

Fernandez and Van Keilegom (2006) and Lee (2009). A detailed analysis of these extensions

is beyond the scope of this article and is deferred to future work.

A Appendix A: Proofs of main Theorems

In this appendix, we prove our main results. Before proving the main results of the ar-
ticle, we first introduce some notation. For a generic set G, let l∞ (G) be the Banach
space of all uniformly bounded real functions on G equipped with the uniform metric
‖f‖G ≡ supz∈G |f (z)|. We consider convergence in distribution of empirical processes in
the metric space

(
l∞ (G) , ‖f‖G

)
in the sense of J. Hoffman-Jørgensen (see, e.g. , van der

Vaart and Wellner (1996)). For any generic Euclidean random vector ξ on a probability
space (Ω,F ,P) , χξ denotes its state space and Pξ denotes its induced probability measure
with corresponding distribution function Fξ (·) = Pξ(−∞, ·]. Given iid observations {ξi}ni=1

of ξ, Pξnf ≡ n−1
∑n

i=1 f (ξi). Let Fξn (·) ≡ Pξn(−∞, ·] be the corresponding empirical CDF.
Likewise, the expectation is denoted by Pξf ≡

∫
fdP . The empirical process evaluated at f

is Gξnf with Gξn ≡
√
n (Pξn − Pξn) . Let ‖·‖2,P be the L2 (P ) norm, that is, ‖f‖2

2,P =
∫
f 2dP .

When P is clear from the context, we simply write ‖·‖2 ≡ ‖·‖2,P . Let |·| denote the Eu-

clidean norm, that is, |A|2 = A
′
A. For a measurable class of functions G from χZ to R,

let ‖·‖ be a pseudo-norm on G, that is, a norm except for the property ‖f‖ = 0 does not
imply f = 0. Let N (ε,G, ‖·‖) be the covering number with respect to ‖·‖ needed to cover
G. Given two functions l, u ∈ G, the bracket [l, u] is the set of functions f ∈ G such that
l ≤ f ≤ u. An ε-bracket with respect to ‖·‖ is a bracket [l, u] with ‖l − u‖ ≤ ε. The covering
number with bracketing N[·] (ε,G, ‖·‖) is the minimal number of ε-brackets with respect to
‖·‖ needed to cover G. Define S ≡ (−∞, τC)× χ

X
. Throughout the appendix, denote C as

a generic constant that may change from expression to expression.

First, we present the proof of the identification result in Proposition 1.
Proof of Proposition 1: By Assumptions 2-4 and the law of iterated expectations, we

have, for t < τC

E
[

Dδ1 {Q ≤ t}
(1−G1 (Q−)) p (X)

∣∣∣∣X]
= E

[
1 {Y1 ≤ t}

(1−G1 (Y1−)) p (X)
E [Dδ1|X, Y1]

∣∣∣∣X]
= E

[
1 {Y1 ≤ t}

(1−G1 (Y1−)) p (X)
E [D|X]E [δ1|X, Y1]

∣∣∣∣X]
= E

[
1 {Y1 ≤ t}

(1−G1 (Y1−)) p (X)
p (X) (1−G1 (Y1))

∣∣∣∣X]
= E [1 {Y1 ≤ t} |X] ,

where the first equality follows from the law of iterated expectations, the second from As-
sumption 2, and the third from Assumption 4. Assumption 3 guarantees that the expectation
is well defined.
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Adopting the analogous steps for the control group,

E
[

(1−D) δ1 {Q ≤ t}
(1−G0 (Q−)) (1− p (X))

∣∣∣∣X]
= E [1 {Y0 ≤ t} |X] .

Therefore,

E
[(

Dδ1 {Q ≤ t}
(1−G1 (Q1−)) p(X)

− (1−D) δ1 {Q ≤ t}
(1−G0 (Q1−)) (1− p(X))

) ∣∣∣∣X]
= Υ (t, x)

concluding the proof. �
Next, we state an auxiliary result from the empirical process literature. Define the

generic class of measurable functions G ≡ {Z → m (Z, θ, h) : θ ∈ Θ, h ∈ H}, where Θ and
H are endowed with the pseudo-norms | · |Θ and | · |H. The following result is part of
Theorem 3 in Chen et al. (2003).

Lemma A.1 Assume that for all (θ0, h0) ∈ Θ × H, m (Z, θ, h) is locally uniformly L2 (P )
continuous, in the sense that

E

[
sup

θ:|θ0−θ|Θ<δ, h:|h0−h|H<δ
|m (Z, θ, h)−m (Z, θ0, h0)|2 ≤ Cδs

]

for all sufficiently small δ > 0 and some constant s ∈ (0, 2]. Then,

N[·] (ε,G, ‖·‖2) ≤ N

(( ε

2C

)2/s

,Θ, ‖·‖Θ

)
×N

(( ε

2C

)2/s

,H, ‖·‖H
)
.

Before we introduce the proofs of our main theorems, we prove two useful lemmas that
are crucial to the derivation of our result. Recall that, for a given (t, x) ∈ W ,

ξ1 (ȳ, x̄, z̄; t, x) = z̄ (1− p (x̄)) 1 {ȳ ≤ t} 1 {x̄ ≤ x} ,
ξ0 (ȳ, x̄, z̄; t, x) = (1− z̄) p (x̄) 1 {ȳ ≤ t} 1 {x̄ ≤ x} .

where p (·) is the true propensity score. Define the infeasible estimator

Ī (t, x) =

∫
ξ1(ȳ, x̄, z̄; t, x)F̂

KM

(dȳ, dx̄, z̄ = 1) (A.1)

−
∫
ξ0(ȳ, x̄, z̄; t, x)F̂

KM

(dȳ, dx̄, z̄ = 0) ,

the analogous of (10) but with the true propensity score.
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Lemma A.2 Under Assumptions 1-5,

sup
(t,x)∈S

∣∣∣∣∣Ī (t, x)− 1

n

n∑
i=1

ηi (t, x)

∣∣∣∣∣ = o
(
n−1/2

)
Proof To prove this lemma, it suffices to apply Theorem 1 of Sellero et al. (2005). Toward
this goal, define the following class of real-valued measurable functions on χ

Y
×χ

X
×{0, 1}

G1 ≡ {(ω̄, x̄, z̄)→ ξ1 (ȳ, x̄, z̄; t, x) : (t, x) ∈ S}. (A.2)

Notice that G1 is a VC-subgraph class of functions with V C index smaller or equal than
k + 2 and admits the envelope Φ (ω̄, x̄, z̄) = 1 that satisfies the required moment conditions
of Theorem 1 of Sellero et al. (2005). The same holds for the class of functions

G2 ≡ {(ω̄, x̄, z̄)→ ξ0 (ȳ, x̄, z̄; t, x) : (t, x) ∈ S}. (A.3)

Hence, we have

Ī (t, x) =
1

n

n∑
i=1

ηi (t, x) +Rn (t, x) (A.4)

where

sup
(t,x)∈S

|Rn (t, x)| = O

(
ln3 n

n

)
a.s.,

concluding our proof. �

In the next lemma we focus on the treated group. The result for the control group is
analogous.

Lemma A.3 Under Assumptions 1-8, we have, uniformly in (t, x) ∈ S

1

n

n∑
i=1

(
1

1− ĜKM

1 (Qi−)
− 1

1−G1 (Qi−)

)
δiDi1 {Qi ≤ t} 1 {Xi ≤ x} (p̂ (Xi)− p (Xi))

= oP
(
n−1/2

)
,

where G1 (t−) ≡ P (C1 < t) .

Proof Denote

Z1 (t) =
Ĝ

KM

1 (t−)−G1 (t−)

1− ĜKM

1 (t−)
.
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Now, one can write

1

n

n∑
i=1

1

1− ĜKM

1 (Qi−)
δiDi1 {Qi ≤ t} 1 {Xi ≤ x} (p̂ (Xi)− p (Xi))

=
1

n

n∑
i=1

1

1−G1 (Qi−)
δiDi1 {Qi ≤ t} 1 {Xi ≤ x} (p̂ (Xi)− p (Xi))

+
1

n

n∑
i=1

1

1−G1 (Qi−)
Z1 (Qi) δiDi1 {Qi ≤ t} 1 {Xi ≤ x} (p̂ (Xi)− p (Xi))

≡ A1 (t, x)) + A2 (t, x) .

It suffices to show that, uniformly in (t, x) ∈ W ,
√
nA2 (·, ·) = oP (1). First, rewrite√

nA2 (·, ·) as

√
nA2 (t, x) =

1√
n

n∑
i=1

δi

(
Ĝ

KM

1 (Qi−)−G1 (Qi−)
) 1−G1 (Qi−)

1− ĜKM

1 (Qi−)

1

(1−G1 (Qi−))2

×Diδi1 {Qi ≤ t} 1 {Xi ≤ x} (p̂ (Xi)− p (Xi)) .

We have

√
n sup

(t,x)∈W
|A2 (t, x)| ≤ C

√
n sup

t

∣∣∣ĜKM

1 (t)−G1 (t)
∣∣∣× sup

t

∣∣∣∣∣ 1−G1 (t)

1− ĜKM

1 (t)

∣∣∣∣∣× sup
x
|(p̂ (x)− p (x))|

= OP(1)×OP(1)×

[
OP

(√
L3

n

)
+O

(
L−

s
2k

+1
)]

in which the last step follows from

√
n sup

t

∣∣∣ĜKM

1 (t)−G1 (t)
∣∣∣ = OP (1) , (A.5)

sup
t

∣∣∣∣∣ 1−G1 (t)

1− ĜKM

1 (t)

∣∣∣∣∣ = OP (1) , (A.6)

sup
x
|(p̂n (x)− p (x))| = OP

(√
L

n

3
)

+O
(
L−

s
2k

+1
)

(A.7)

see Gill (1983) for (A.5), Zhou (1992) for (A.6), and Hirano et al. (2003) for (A.7). Taking
L = a ·N v as in Assumption 8,

OP

(√
L3

n

)
+OP

(
L−

s
2k

+1
)

= OP

(
n

3v−1
2

)
+O

(
n−( s

2k
+1)v

)
= oP(1)

if v < 1/3 and s/k > 2. From Assumptions 7 and 8, these two conditions are fulfilled,
concluding our proof. �

Now we are ready to proceed with the proofs of our main results.
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Proof of Lemma 1: Notice that

Î (t, x) = Ī (t, x)

+
n1

n

n1∑
i=1

W1,i:n1

(
ξ̂1

(
Q1,i:n1 , X1,[i:n1], D1[i:n1]; t, x

)
− ξ1

(
Q1,i:n1 , X1,[i:n1], D1[i:n1]; t, x

))
(A.8)

− n0

n

n0∑
l=1

W0,l:n0

(
ξ̂0

(
Q0,l:n0 , X0,[l:n0], D0,[l:n0]; t, x

)
− ξ0

(
Q0,l:n0 , X0,[l:n0], D0,[l:n0]; t, x

))
First, by Lemma A.2, we have that, uniformly in (t, x) ∈ S,

Ī (t, x) =
1

n

n∑
i=1

ηi (t, x) + oP
(
n1/2

)
. (A.9)

We now focus on the second term of (A.8). Our goal is to show that

sup
(t,x)∈S

∣∣∣∣n1

n

n1∑
i=1

W1,i:n1

(
ξ̂1

(
Qi:n1 , X[i:n1], D[i:n1]; t, x

)
− ξ1

(
Qi:n1 , X[i:n1], D[i:n1]; t, x

))
(A.10)

− 1

n

n∑
i=1

F1 (t|Xi) p (Xi) 1 {Xi ≤ x} (Di − p (Xi))

∣∣∣∣ = oP
(
n−1/2

)
As discussed in Section 3, we have that

W1,i:n1 =
δ[i:n1]

n1

1

1− ĜKM

1 (Qi:n1−)
,

where Ĝ
KM

1 is the Kaplan-Meier estimator of G1. By Lemma A.3, we have that, uniformly
in (t, x) ∈ S

n1

n

n1∑
i=1

W1,i:n1

(
ξ̂1

(
Qi:n1 , X[i:n1], D[i:n1]; t, x

)
− ξ1

(
Qi:n1 , X[i:n1], D[i:n1]; t, x

))
=

1

n

n∑
i=1

Diδi
1−G1 (Qi−)

(
ξ̂1 (Qi, Xi, Di:; t, x)− ξ1 (Qi, Xi, Di; t, x)

)
+ oP

(
n−1/2

)
, (A.11)

that is, that there is no estimation effect due to the replacing G1 by estimation of Ĝ
KM

1 in
the second term of (A.8).
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By adding and subtracting a number of terms, we have that (A.11) is equal to

1√
n

n∑
i=1

[
Dδi

1−G1 (Qi−)

(
ξ̂1 (Qi, Xi, Di:; t, x)− ξ1 (Qi, Xi, Di; t, x)

)
−
∫
X
F1 (t, x|x̄) p (x̄) (p̂n (x̄)− p (x̄))P (dx̄)] (A.12)

+

[√
n

∫
X
F1 (t, x|x̄) p (x̄) (p̂n (x̄)− p (x̄))P (dx̄) (A.13)

− 1√
n

n∑
i=1

ũn(Xi)
(Di − pL (Xi))√

pL (Xi) (1− pL (Xi))

]
+

1√
n

n∑
i=1

(ũn(Xi)− un(Xi))
(Di − pL (Xi))√

pL (Xi) (1− pL (Xi))
(A.14)

+
1√
n

(
n∑
i=1

un(Xi)
(Di − pL (Xi))√
pL (X) (1− pL (X))

− u (Xi)
(Di − p (Xi))√
p (Xi) (1− p (Xi))

)
(A.15)

+
1√
n

n∑
i=1

F1 (t|Xi) 1 {X1 ≤ x} p (Xi) (Di − p (Xi)) (A.16)

where

ũn(z) =

∫
X
F1 (t, x|x̄) p (x̄)L′

(
RL (x̄)′ π̃L

)
RL (x̄)′ P (dx̄) Σ̃−1

L

√
pL (Xi) (1− pL (Xi))R

L (z) ,

un(z) =

∫
X
F1 (t, x|x̄) p (x̄)L′

(
RL (x̄)′ πL

)
RL (x̄)′ P (dx̄) Σ−1

L

√
pL (Xi) (1− pL (Xi))R

L (z) ,

u(z) = F1 (t|z) 1{z ≤ x)p (z)
√
p (z) (1− p (z)),

with

Σ−1
L = E

[
RL (X)RL (X)′ L′

(
RL (x̄)′ πL

)]
Σ̃−1
L =

1

n

n∑
i=1

RL (Xi)R
L (Xi)

′ L
(
RL (x̄)′ π̃L

)
,

and π̃L between π̂L and πL.
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By the same arguments as in the Addendum of ?4, we have that, uniformly in (t, x) ∈ S,

1√
n

n∑
i=1

Diδi
1−G1 (Qi−)

(
ξ̂1 (Qi, Xi, Di:; t, x)− ξ1 (Qi, Xi, Di; t, x)

)
− 1√

n

n∑
i=1

F1 (t|Xi) p (Xi) 1 {X1 ≤ x} (Di − p (Xi))

=
[
OP
(
L−

s
2k

+1
)

+OP

(
L2n−

1
2

)]
+OP

(√
nL−

s
2k

+1
)

+OP

(
n−

1
2L

11
2

)
+OP

(
max

(
L1− s

2k , L−
1
2k

))
= oP (1)

under Assumptions 7 and 8. Therefore, by the above results we obtain that

sup
(t,x)∈S

∣∣∣∣n1

n

n1∑
i=1

W1,i:n1

(
ξ̂1

(
Qi:n1 , X[i:n1], D[i:n1]; t, x

)
− ξ1

(
Qi:n1 , X[i:n1], D[i:n1]; t, x

))
(A.17)

− 1

n

n∑
i=1

F1 (t|Xi) 1 {Xi ≤ x} p (Xi) (Di − p (Xi))

∣∣∣∣
= oP

(
n−1/2

)
as desired.

By applying the same arguments, we have that

sup
(t,x)∈S

∣∣∣∣n0

n

n0∑
l=1

W0,l:n0

(
ξ̂0

(
Ql:n0 , X[l:n0], D[l:n0]; t, x

)
− ξ0

(
Ql:n0 , X[l:n0], D[l:n0]; t, x

))
(A.18)

− 1

n

n∑
i=1

F0 (t|Xi) (1− p (Xi)) 1 {X1 ≤ x} (Di − p (Xi))

∣∣∣∣ = oP
(
n−1/2

)
.

Combining (A.9), (A.17) and (A.18), we have that, uniformly in (t, x) ∈ S,

Î (t, x)− I (t, x)

=
1

n

n∑
i=1

[(ηi (t, x)− I (t, x))− α (Xi; t, x) (Di − p (Xi))] + oP
(
n−1/2

)
where

α (Xi; t, x) = [F1 (t|Xi) p (Xi) + F0 (t|Xi) (1− p (Xi))] 1 {Xi ≤ x}

concluding our proof.�

Proof of Theorem 1: From the asymptotic representation of Lemma 1, it suffices to
prove the convergence of the dominant term. To this end, define the class of real-valued

4. The step-by-step procedure is available upon request.
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measurable functions on χ
Y
× χ

X
× {0, 1} × {0, 1}

F = {
(
ω̄, x̄, z̄, δ̄

)
→ ϕ(t,x) ≡ η

(
ω̄, x̄, z̄, δ̄; t, x

)
− (F1 (t|x̄) p (x̄) + F0 (t|x̄) (1− p (x̄))) 1 {x̄ ≤ x} (z̄ − p (x̄)) : (t, x) ∈ S}

where η
(
ω̄, x̄, z̄, δ̄; t, x

)
is defined as in (15)

Our goal is to show that class of functions F is Donsker. By Theorem 2.10.6 in
van der Vaart and Wellner (1996) it suffices to show that the classes of functions G1 and
G2, as defined in (A.2) and (A.3), and for j = {0, 1} , {γj,0 (·)},{δ}, {γj,1 (·)}, {γj,2 (·)},
{Fj (t, x|·)}, {(D − p (·))} are Donsker.

For j = {0, 1}, define the class of real-valued measurable functions on χ
X

G3,j ≡ {x̄→ φ2 (x̄) ≡ Fj (t|x̄) : t ∈ S}. (A.19)

Now, notice that both G1, G2 and G3,j are VC-Class with square integrable envelope
functions. Therefore, by Theorem 2.6.8 in van der Vaart and Wellner (1996), these classes
of functions are Donsker. The functions γ0,j, (D − p (·)) and δ does not depend on t nor on
x and so they are clearly Donsker.

We next consider γj,1. For j = {0, 1} ,define the classes of real-valued measurable func-
tions

F1,j = {ω ∈ [−∞, tH)→ γj,1 (ω) ≡ 1

1−Hj (ω)

∫
1 {ω < ω̄} ξj (ω̄, x̄, z̄; t, x)

γj,0 (w̄)Hj,11 (dω̄, dx̄) : (t, x) ∈ S}

F2,j = {ω ∈ [−∞, tH)→ γj,2 (ω) ≡
∫ ∫

1 {v̄ < ω, v̄ < ω̄} ξj (ω̄, x̄, z̄; t, x)

[1−Hj (v̄)]2

γj,0 (ω̄)Hj,0 (dv̄)Hj,11 (dω̄, dx̄) : (t, x) ∈ S}

In order to prove that these classes of functions are Donsker, by Theorem 2.5.6 of van der
Vaart and Wellner (1996), it suffices to show that, for i = 1, 2,∫ ∞

0

√
lnN[·] (ε,Fi,j, L2 (P ))dε <∞ (A.20)

where P is the probability measure corresponding to the joint distribution of (Q, δ,D,X),
and L2 (P ) is the L2−norm. Notice that both F1,j and F2,j are classes of monotone bounded
functions. Therefore, by Theorem 2.7.5 in van der Vaart and Wellner (1996), we have that,
for a fixed ε > 0 and i = 1, 2, lnN[·] (ε,Fi,j, L2 (P )) ≤ Kε−1, where K is an arbitrary
constant. Hence, for i = 1, 2, the integral in (A.20) is finite, and the classes of functions F1,j

and F2,j, j = {0, 1} , are Donsker.
We have just shown that F is Donsker, that is, we have proved that

√
n
(
Î − I

)
⇒ C∞

where C∞ is a tight Gaussian process in l∞ (S) with zero mean and covariance function
given by (20). Since under H0, I (t, x) = 0 ∀ (t, x) ∈ W ⊆ S, the proof is completed.�

46



Proof of Theorem 2: Notice that we can always write

√
nÎ (t, x) =

√
n
(
Î − I

)
(t, x) +

√
nI (t, x)

= D1,n (t, x) +D2,n (t, x) .

From the proof of Theorem 1, we have that

√
n
(
Î − I

)
⇒ C∞,

and therefore D1,n (t, x) = OP (1) . On the other hand, under the alternative I (t, x) 6= 0 for
some (t, x). Therefore D2,n (t, x) = OP

(
n1/2

)
. Hence, under H1,

√
n sup

(t,x)∈W

∣∣∣Î (t, x)
∣∣∣→p ∞,

Since under H0, I (t, x) = 0 for all (t, x), KSn = OP (1), and therefore cKSα = O (1)
almost surely, we conclude that

lim
n→∞

P
{
KSn > cKSα

}
= 1.

Analogously, we have that
lim
n→∞

P
{
CvMn > cCvMα

}
= 1.

�

Proof of Theorem 3: As in the proof of Theorem 2, we can always write

√
nÎ (t, x) =

√
n
(
Î − I

)
(t, x) +

√
nI (t, x)

= D1,n (t, x) +D2,n (t, x)

From the proof of Theorem 1, we have that

√
n
(
Î − I

)
⇒ C∞,

and therefore D1,n (t, x) = OP (1) . On the other hand, under the local alternatives of the
type H1,n,

√
nI (t, x) = E [h (t, x) (p(X) (1− p (X))) 1 {X ≤ x}] = OP (1). Hence, under

H1,n, √
nÎ (t, x)⇒ C∞ +R (t, x)

in l∞ (W) .�

Before we proceed with the proof of Theorem 4, we prove the uniformly consistency of
our estimator for

α (X; t, x) =

(
E
[
Dδ1 {Q ≤ t}
1−G1 (Q−)

∣∣∣∣X]− E
[

(1−D) δ1 {Q ≤ t}
1−G0 (Q−)

∣∣∣∣X]) 1 {X ≤ ·}

= [F1 (t|X) p (X)− F0 (t|X) (1− p (X))] 1 {X ≤ ·}

To this end, if suffices to show that
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sup
(t,x̄)∈S

∣∣α̂KM1 (x̄; t)− F1 (t|x̄) p (x̄)
∣∣ = oP (1) ,

where

α̂KM1 (x̄; t) =

(
1

n

n∑
i=1

Diδi1 {Qi ≤ t}RL (Xi)

1− ĜKM

1 (Qi−)

)′(
1

n

n∑
i=1

RL (Xi)R
L (Xi)

′

)−1

RL (x̄)

The analogous result applies to the other expectation

Lemma A.4 Suppose Assumptions 1-8 hold. Additionally, assume that F1 (·, ·|X) is con-
tinuously differentiable of order m ≥ k, where k is the dimension of X. Then,

sup
(t,x̄)∈S

∣∣α̂KM1 (x̄; t)− F1 (t|x̄) p (x̄)
∣∣ = oP (1)

Proof For a matrix A, let ‖A‖ denote the matrix norm of A such that ‖A‖ =
√
tr (A′A).

Define

ΦL (t) =
1

n

n∑
i=1

δiDi1 {Qi ≤ t} γ1,0 (Qi)R
L (Xi) ,

Φ
KM

L (t) =
1

n

n∑
i=1

δiDi1 {Qi ≤ t}RL (Xi)

1− ĜKM

1 (Qi−)
,

ζL =
1

n

n∑
i=1

RL (Xi)R
L (Xi)

′
.

Notice that
α̂KM1 (t|x̄) = ΦKM

L (t)
′
ζ−1
L RL (x̄)

From Theorem 1 of Stute (1993), we have that ΦKM
L (t) = ΦL (t) a.s.. Given that the

conditional variance of δi1 {Q ≤ ·} γ0 (Qi) conditional on X is bounded, the uniform bound
in Newey (1997) for power series estimators applies:

sup
(t,x̄)∈S

∣∣∣ΦL (t)
′
ζ−1
L RL (x̄)− F1 (t|x̄) p (x̄)

∣∣∣ ≤ C (L 3
2n−

1
2 + L1−m

k

)
where m is the number of continuous derivatives of F (·|x̄).

Taking L = a ·N v as in Assumption 8, and from the results above, we have that

sup
(t,x̄)∈S

∣∣α̂KM1 (x̄; t)− F1 (t|x̄) p (x̄)
∣∣ = oP (1)

if v < 1/3, and m ≥ k. Given that these conditions are fulfilled, we conclude our proof.
�

Next, we proceed with the proof of Theorem 4.
Proof of Theorem 4: For j ∈ {0, 1}, denote

η̂j,i (t, x) = ξ̂j (Qi, Xi, Di; t, x) γ̂j,0 (Qj,i) δj,i + γ̂j,1 (Qj,i) (1− δj,i)− γ̂j,2 (Qj,i)
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and
η̂i (t, x) = η̂1,i (t, x)− η̂0,i (t, x)

and γ̂j,0, γ̂j,1 and γ̂j,2 are the empirical analogous of γj,0, γj,1 and γj,2, j = {0, 1} , respectively,
as defined in (15).

The proof follows two steps. In the first step in this proof is to show that

1√
n

n∑
i=1

(
η̂i(t, x)− α̂KM

(Xi; t, x) (Di − p̂n (Xi))
)

=
1√
n

n∑
i=1

(ηi(t, x)− α (Xi; t, x) (Di − p (Xi))) + oP (1) (A.21)

uniformly in (t, x) ∈ S, that is, there is no estimation effect coming from replacing the true
η(t, x), α (X; t, x) and p (X) with their nonparametric estimators.

In the second step, we prove that, under H0, H1 or H1,n ,

1√
n

n∑
i=1

(ηi(t, x, p)− α (Xi; t, x) (Di − p (Xi)))Vi (A.22)

converges weakly to the same limit process as in Theorem 1.
We proceed with the proof of the first step. For j = {0, 1}, consider the class of measur-

able functions

F̃j = {
(
ω̄, x̄, z̄, δ̄

)
→ξj (ω̄, x̄, z̄; t, x, p) γj,0 (ω̄) δ̄

+ γj,1 (ω̄)
(
1− δ̄

)
− γj,2 (ω̄) : (t, x) ∈ S, p ∈ H},

where H is the collection of all distribution functions that satisfy Assumption 7.We prove
that the F̃j is Donsker. First, similar to Theorem 1, define the class of real-valued measurable
functions on χ

Y
× χ

X
× {0, 1}

F0,3 ≡{(ω̄, x̄, z̄)→ ξ0 (ω̄, x̄, z̄; t, x, p) ≡ p (x̄) 1 {ω̄ ≤ t}
× 1 {x̄ ≤ x} : (t, x) ∈ S, p ∈ H},

F1,3 ≡{(ω̄, x̄, z̄)→ ξ1 (ω̄, x̄, z̄; t, x, p) ≡ (1− p (x̄)) 1 {ω̄ ≤ t}
× 1 {x̄ ≤ x} : (t, x) ∈ S, p ∈ H}.

Note that, for each ((t, x) , p) ∈ S ×H, we have that, for j = {0, 1} ,

E
[
sup |ξj (ω̄, x̄, z̄; t, x, p1)− ξj (ω̄, x̄, z̄; t, x, p)|2

]
≤ Cδ2,

where the supremum is over the set (t1, x1) ∈ S and p1 ∈ H such that |(t1, x1)− (t, x)| ≤ δ
and supx∈χ

X
|p1 (x)− p (x)| ≤ δ, respectively. By Lemma A.1 and Theorem 19.5 in van der

Vaart (1998), the classes of functions F0,3 and F1,3 are Donsker. Then, by Theorem 2.1
of Bae and Kim (2003), we have that F̃1 and F̃2 are Donsker. Therefore, by a stochastic
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equicontinuity argument and the Glivenko-Cantelli Theorem

sup
(t,x)∈S

∣∣∣∣∣ 1√
n

n∑
i=1

(η̂i(t, x, p̂n)− ηi(t, x, p))

∣∣∣∣∣ = oP (1) . (A.23)

Now, consider the class of functions

F0,4 ≡{(ω̄, x̄, z̄)→ α̃0 (ω̄, x̄, z̄; t, x, p, F0) ≡ p (x̄) 1 {x̄ ≤ x}F0 (t|x̄) (z̄ − p (x̄))

: (t, x) ∈ S, p ∈ H1, F0 ∈ H2},

F1,4 ≡{(ω̄, x̄, z̄)→ α̃1 (ω̄, x̄, z̄; t, x, p, F1) ≡ (1− p (x̄)) 1 {x̄ ≤ x}F1 (t|x̄) (z̄ − p (x̄))

: (t, x) ∈ S, p ∈ H1, Fq ∈ H2}.

Again, for each ((t, x) , p, Fj) ∈ S ×H1×H2, we have that, for j = {0, 1} ,

E
[
sup |α̃j (ω̄, x̄, z̄; t1, x1, p1;Fj,1)− α̃j (ω̄, x̄, z̄; t, x, p;Fj)|2

]
≤ Cδ2,

where the supremum is over the set (t1, x1) ∈ S , p1 ∈ H1 and Fj ∈ H2 such that
|(t1, x1)− (t, x)| ≤ δ, supx∈χ

X
|p1 (x)− p (x)| ≤ δ and sup(t,x)∈S |Fj,1 (t|x)− Fj (t|x)| ≤ δ

respectively. By Lemma A.1 and Theorem 19.5 in van der Vaart (1998), the classes of func-
tions F0,4 and F1,4 are Donsker. Therefore, by a stochastic equicontinuity argument, the
Glivenko-Cantelli Theorem and the triangle inequality, we have

sup
(t,x)∈S

∣∣∣∣∣ 1√
n

n∑
i=1

(
α̂

KM

(Xi; t, x) (Di − p̂ (Xi))− α (Xi; t, x) (Di − p (Xi))
)∣∣∣∣∣ = oP (1) . (A.24)

Combining (A.23) and (A.24), we have established (A.21), finishing the proof of the first
step.

Next, let’s consider (A.22). Define the classes of real measurable functions

G0,1,∗ ≡ {
(
w̄, x̄, z̄, δ̄, v̄

)
∈ χ

Y
× χ

X
× {0, 1} × {0, 1} × χv → g0

(
w̄, x̄, z̄, δ̄, v̄; t, x

)
≡

(1 {w̄ ≤ t} 1 {x̄ ≤ x} p(x̄)γ0,0 (w̄) δ̄ + γ0,1 (w̄) (1− δ̄)− γ0,2 (w̄)

+ (1− p (x̄)) 1 {x̄ ≤ x}F0 (y|Xi) (z̄ − p (x̄)))v̄ : (t, x) ∈ S},

and

G1,1,∗ ≡ {
(
w̄, x̄, z̄, δ̄, v̄

)
∈ χ

Y
× χ

X
× {0, 1} × {0, 1} × χv → g1

(
w̄, x̄, z̄, δ̄, v̄; t, x

)
≡

(1 {w̄ ≤ t} 1 {x̄ ≤ x} (z̄ − p(x̄)) γ1,0 (w̄) δ̄ + γ1,1 (w̄) (1− δ̄)− γ1,2 (w̄)

− p (x̄) 1 {x̄ ≤ x}F1 (y|x̄) (z̄ − p (x̄)))v̄ : (t, x) ∈ S}.

For j = {0, 1}, the classes Gj,1,∗ are P(w̄,x̄,z̄,δ̄,v̄)-Donsker, since Gj,1 are Pw̄,x̄,z̄,δ̄-Donsker, see

Theorem 2.9.6 in van der Vaart and Wellner (1996). Then, since P∗ngj = 0 for all gj ∈ Gj,1,∗,

I∗ (t, x) =
1

n

n∑
i=1

(ηi (t, x)− α (Xi; t, x) (Di − p (Xi)))Vi + oP∗n
(
n−1/2

)
, (A.25)

uniformly in (t, x) ∈ S.
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The expansion (A.25), and the multiplier functional central limit theorem, see Theorem
2.9.6 in van der Vaart and Wellner (1996), imply that

√
nI∗ (t, x) converges weakly (almost

surely) to the same weak limit as
√
nÎ (t, x) in l∞ (S) under H0, H1 or H1n.

This completes the proof of Theorem 4.�

Proof of Theorem 5 First, we must derive the asymptotic linear representation of the

process
(
Î

CATE

τ − ICATE

τ

)
(x). To consider the most general case, we set τ = τC . Then, we

can rewrite Î
CATE

τ (·) as

Î
CATE

τ = Ī
CATE

τ (x)

+
n1

n

n1∑
i=1

W1,i:n1

(
ξ̂
CATE

1

(
Q1,i:n1 , X1,[i:n1], D1[i:n1]; t, x

)
− ξCATE

1

(
Q1,i:n1 , X1,[i:n1], D1[i:n1];x

))
(A.26)

− n0

n

n0∑
l=1

W0,l:n0

(
ξ̂
CATE

0

(
Q0,l:n0 , X0,[l:n0], D0,[l:n0]; t, x

)
− ξCATE

0

(
Q0,l:n0 , X0,[l:n0], D0,[l:n0];x

))
,

where Ī
CATE

τ (x) is defined similarly to (A.1) but replacing ξ1 and ξ1 with

ξ
CATE

1 (ȳ, x̄, z̄;x) = z̄ (1− p (x̄)) ȳ1 {x̄ ≤ x} ,
ξ
CATE

0 (ȳ, x̄, z̄;x) = (1− z̄) p (x̄) ȳ1 {x̄ ≤ x} .

Additionally, ξ̂
CATE

1 and ξ̂
CATE

0 are defined similarly to ξ
CATE

1 and ξ
CATE

0 , but replacing the
true propensity score p (·) by the SLE p̂ (·) .

We will derive the uniform representation of each term separately, as in Theorem 1. To
this end, define the classes of real-value measurable functions on χ

Y
× χ

X
× {0, 1}

H0,1 ≡ {(ω̄, x̄, z̄)→ ξ
CATE

0 (ȳ, x̄, z̄;x) ≡ p (x̄) ω̄1 {x̄ ≤ x} : x ∈ Rk},

H1,1 ≡ {(ω̄, x̄, z̄)→ ξ
CATE

1 (ȳ, x̄, z̄;x) ≡ (1− p (x̄)) ω̄ × 1 {x̄ ≤ x} : x ∈ Rk}

Notice that Hj,1 are a VC-subgraph classes of functions with V C index smaller or equal
than k + 2 and admits the envelope Φ (ω̄, x̄, z̄) = |ω̄| that satisfies, under Assumption 10,
the required moment conditions of Theorem 1 of Sellero et al. (2005). Thus,

Ī
CATE

τ (x) =
1

n

n∑
i=1

ηCATEi (x) +RCATE
n (x) (A.27)

where
ηCATEi (x) = ηCATE1,i (x)− ηCATE0,i (x) ,

and for j = {0, 1},

ηCATEj,i (x) = ξCATEj (Qi, Xi, Di;x) γj,0 (Qj,i) δj,i + γCATEj,1 (Qj,i) (1− δj,i)− γCATEj,2 (Qj,i) ,
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γj,0 (t̄) = exp

{∫ t̄−

0

Hj,0 (dw̄)

1−Hj (w̄)

}
,

γj,1 (t̄) =
1

1−Hj (t)

∫
1 {t̄ < w̄} ξCATE

j (w̄, x̄, z̄;x) γj,0 (w̄)Hj,11 (dw̄, dx̄) ,

γj,2 (t̄) =

∫ ∫
1 {v̄ < t̄, v̄ < w̄} ξCATE

j (w̄, x̄, z̄;x)

[1−Hj (v̄)]2
γj,0 (w̄)Hj,0 (dv̄)Hj,11 (dw̄, dx̄) .

and

sup
x∈Rk

∣∣RCATE
n (x)

∣∣ = O

(
ln3 n

n

)
a.s.

Now, we look for the second term of (A.26). Using similar arguments as in the proof of
Lemma 1, we can establish that

n1

n

n1∑
i=1

W1,i:n1

(
ξ̂
CATE

1

(
Q1,i:n1 , X1,[i:n1], D1[i:n1]; t, x

)
− ξCATE

1

(
Q1,i:n1 , X1,[i:n1], D1[i:n1];x

))
− n0

n

n0∑
l=1

W0,l:n0

(
ξ̂
CATE

0

(
Q0,l:n0 , X0,[l:n0], D0,[l:n0]; t, x

)
− ξCATE

0

(
Q0,l:n0 , X0,[l:n0], D0,[l:n0];x

))
=

1

n

n∑
i=1

α
CATE

(Xi;x) (Di − p (Xi)) + oP
(
n−1/2

)
(A.28)

uniformly in x ∈ WX , where

α
CATE

(x̄;x) = α
CATE

1 (x̄;x)− αCATE

0 (x̄;x)

and

α
CATE

1 (x̄;x) = −p (x̄) 1 {x̄ ≤ x}E (Y1|x̄) ,

α
CATE

0 (x̄;x) = (1− p (x̄)) 1 {x̄ ≤ x}E (Y0|x̄) .

Combining (A.27) and (A.28), we conclude that

Î
CATE

τ − ICATE

τ =
1

n

n∑
i=1

[(
ηCATEi (x)− ICATE

τ (x)
)

(A.29)

− αCATE

(Xi;x) (Di − p (Xi))

]
+ oP

(
n−1/2

)
uniformly in x ∈ WX , concluding the proof of the asymptotic linear representation.

Once we have proved the validity of the uniform linear representation (A.29), the proof
of the weak converge of the process

√
n
(
Īτn − Iτ

)
(x) under HCATE

0 , HCATE
1 and HCATE

1,n

follows the same steps of Theorems 1, 2 and 3, and the validity of the bootstrap follows the
reasoning of Theorem 4 in a routine fashion. Details are omitted.�
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